分解式を使用して、二次方程式を解くためのコードをMATLABに実装しています。
コードは次のとおりです。
clear all
format short
a=1; b=30000000.001; c=1/4;
rdelta=sqrt(b^2-4*a*c);
x1=(-b+rdelta)/(2*a);
x2=(-b-rdelta)/(2*a);
fprintf(' Roots of the polynomial %5.3f x^2 + %5.3f x+%5.3f \n',a,b,c)
fprintf ('x1= %e\n',x1)
fprintf ('x2= %e\n\n',x2)
valor_real_x1= -8.3333e-009;
valor_real_x2= -2.6844e+007;
error_abs_x1 = abs (valor_real_x1-x1);
error_abs_x2 = abs (valor_real_x2-x2);
error_rel_x1 = abs (error_abs_x1/valor_real_x1);
error_rel_x2 = abs (error_abs_x2/valor_real_x2);
fprintf(' absolute_errorx1 = |real value - obtained value| = |%e - %e| = %e \n',valor_real_x1,x1,error_abs_x1)
fprintf(' absolute_errorx2 = |real value - obtained value| = |%e - %e| = %e \n\n',valor_real_x2,x2,error_abs_x2)
fprintf(' relative error_x1 = |absolut error / real value| = |%e / %e| = %e \n',error_abs_x1,valor_real_x1,error_rel_x1 )
fprintf(' relative_error_x2 = |absolut error / real value| = |%e / %e| = %e \n',error_abs_x2,valor_real_x2,error_rel_x2)
私が抱えている問題は、正確な解が得られることです。つまり、値a = 1、b = 30000000,001 c = 1/4の場合、根の値は次のようになります。
Roots of the polynomial 1.000 x^2 + 30000000.001 x+0.250
x1= -9.313226e-009
x2= -3.000000e+007
多項式の根の正確な値は次のとおりです。
x1= -8.3333e-009
x2= -2.6844e+007
これにより、計算の絶対精度と相対精度に次のエラーが発生します。
absolute_errorx1 = |real value - obtained value| = |-8.333300e-009 - -9.313226e-009| = 9.799257e-010
absolute_errorx2 = |real value - obtained value| = |-2.684400e+007 - -3.000000e+007| = 3.156000e+006
relative error_x1 = |absolut error / real value| = |9.799257e-010 / -8.333300e-009| = 1.175916e-001
relative_error_x2 = |absolut error / real value| = |3.156000e+006 / -2.684400e+007| = 1.175682e-001
私の質問は次のとおりです。二次方程式の根を取得するための最適な方法はありますか?つまり、期待される解と結果の解の間の相対誤差を減らすためにコードを変更できますか?