接線空間の法線マッピング シェーダーからかなりおかしな結果が得られます :)。ここに示したシーンでは、ティーポットと市松模様の壁が通常の Phong-Blinn シェーダでシェーディングされています (明らかに、ティーポットのバックフェース カリングにより、少し儚いルック アンド フィールが得られます :-) )。サイケデリックな結果で、球に法線マッピングを追加しようとしました:
光は右側から来ています (ほぼ黒い塊として見えます)。球体で使用している法線マップは次のようになります。
入力モデルの処理に AssImp を使用しているため、各頂点の接線と従法線が自動的に計算されます。
ピクセル シェーダーと頂点シェーダーは次のとおりです。何が問題なのかよくわかりませんが、接線基底行列が何らかの形で間違っていても驚かないでしょう。物事を目の空間に計算してから、目と光のベクトルを接線空間に変換する必要があり、これが正しい方法であると思います。ライトの位置は、既にビュー スペースにあるシェーダーに入ることに注意してください。
// Vertex Shader
#version 420
// Uniform Buffer Structures
// Camera.
layout (std140) uniform Camera
{
mat4 Camera_Projection;
mat4 Camera_View;
};
// Matrices per model.
layout (std140) uniform Model
{
mat4 Model_ViewModelSpace;
mat4 Model_ViewModelSpaceInverseTranspose;
};
// Spotlight.
layout (std140) uniform OmniLight
{
float Light_Intensity;
vec3 Light_Position; // Already in view space.
vec4 Light_Ambient_Colour;
vec4 Light_Diffuse_Colour;
vec4 Light_Specular_Colour;
};
// Streams (per vertex)
layout(location = 0) in vec3 attrib_Position;
layout(location = 1) in vec3 attrib_Normal;
layout(location = 2) in vec3 attrib_Tangent;
layout(location = 3) in vec3 attrib_BiNormal;
layout(location = 4) in vec2 attrib_Texture;
// Output streams (per vertex)
out vec3 attrib_Fragment_Normal;
out vec4 attrib_Fragment_Position;
out vec3 attrib_Fragment_Light;
out vec3 attrib_Fragment_Eye;
// Shared.
out vec2 varying_TextureCoord;
// Main
void main()
{
// Compute normal.
attrib_Fragment_Normal = (Model_ViewModelSpaceInverseTranspose * vec4(attrib_Normal, 0.0)).xyz;
// Compute position.
vec4 position = Model_ViewModelSpace * vec4(attrib_Position, 1.0);
// Generate matrix for tangent basis.
mat3 tangentBasis = mat3( attrib_Tangent,
attrib_BiNormal,
attrib_Normal);
// Light vector.
attrib_Fragment_Light = tangentBasis * normalize(Light_Position - position.xyz);
// Eye vector.
attrib_Fragment_Eye = tangentBasis * normalize(-position.xyz);
// Return position.
gl_Position = Camera_Projection * position;
}
...そして、ピクセル シェーダーは次のようになります。
// Pixel Shader
#version 420
// Samplers
uniform sampler2D Map_Normal;
// Global Uniforms
// Material.
layout (std140) uniform Material
{
vec4 Material_Ambient_Colour;
vec4 Material_Diffuse_Colour;
vec4 Material_Specular_Colour;
vec4 Material_Emissive_Colour;
float Material_Shininess;
float Material_Strength;
};
// Spotlight.
layout (std140) uniform OmniLight
{
float Light_Intensity;
vec3 Light_Position;
vec4 Light_Ambient_Colour;
vec4 Light_Diffuse_Colour;
vec4 Light_Specular_Colour;
};
// Input streams (per vertex)
in vec3 attrib_Fragment_Normal;
in vec3 attrib_Fragment_Position;
in vec3 attrib_Fragment_Light;
in vec3 attrib_Fragment_Eye;
// Shared.
in vec2 varying_TextureCoord;
// Result
out vec4 Out_Colour;
// Main
void main(void)
{
// Compute normals.
vec3 N = normalize(texture(Map_Normal, varying_TextureCoord).xyz * 2.0 - 1.0);
vec3 L = normalize(attrib_Fragment_Light);
vec3 V = normalize(attrib_Fragment_Eye);
vec3 R = normalize(-reflect(L, N));
// Compute products.
float NdotL = max(0.0, dot(N, L));
float RdotV = max(0.0, dot(R, V));
// Compute final colours.
vec4 ambient = Light_Ambient_Colour * Material_Ambient_Colour;
vec4 diffuse = Light_Diffuse_Colour * Material_Diffuse_Colour * NdotL;
vec4 specular = Light_Specular_Colour * Material_Specular_Colour * (pow(RdotV, Material_Shininess) * Material_Strength);
// Final colour.
Out_Colour = ambient + diffuse + specular;
}
編集: シーンの 3D Studio レンダリング (UV が球体で問題ないことを示すため):