MPI_Datatypeを定義し、MPI_Gathervと組み合わせて使用する方法を学ぶための簡単なコードを書いています。MPI_Finalize()を呼び出すまでは、プロセス上で構造化データの可変長の動的に割り当てられた配列を組み合わせることができることを確認したかったのですが、これは正常に機能しているようです。これが、printステートメントとEclipse PTPデバッガー(バックエンドはgdb-mi)を使用して、問題が明らかになり始める場所であることを確認しました。私の主な質問は、セグメンテーション違反をどのように取り除くことができるかということです。
コードを実行するたびにセグメンテーション違反が発生するわけではありません。たとえば、2つまたは3つのプロセスでは発生していませんが、約4つ以上のプロセスで実行すると定期的に発生する傾向があります。
また、このコードをvalgrindで実行すると、セグメンテーション違反は発生しません。ただし、valgrindからエラーメッセージが表示されますが、MPI関数を使用すると、ターゲットを絞った抑制が多数ある場合でも、出力を理解するのは困難です。また、より多くの抑制を使用すると、有用なエラーメッセージが表示されなくなるのではないかと心配しています。
これらのフラグを使用して通常のコードをコンパイルするため、どちらの場合もC99標準を使用しています。 -pedantic -std = c99 -Wall -g
どちらもgcc4.4mpiccコンパイラを使用し、OpenMPIv1.4.5でRedHatLinuxを使用するクラスタで実行されます。他の重要な情報を省略した場合はお知らせください。これがコードです、そして事前に感謝します:
//#include <unistd.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
//#include <limits.h>
#include "mpi.h"
#define FULL_PROGRAM 1
struct CD{
int int_ID;
double dbl_ID;
};
int main(int argc, char *argv[]) {
int numprocs, myid, ERRORCODE;
#if FULL_PROGRAM
struct CD *myData=NULL; //Each process contributes an array of data, comprised of 'struct CD' elements
struct CD *allData=NULL; //root will dynamically allocate this array to store all the data from rest of the processes
int *p_lens=NULL, *p_disp=NULL; //p_lens stores the number of elements in each process' array, p_disp stores the displacements in bytes
int MPI_CD_size; //stores the size of the MPI_Datatype that is defined to allow communication operations using 'struct CD' elements
int mylen, total_len=0; //mylen should be the length of each process' array
//MAXlen is the maximum allowable array length
//total_len will be the sum of mylen across all processes
// ============ variables related to defining new MPI_Datatype at runtime ====================================================
struct CD sampleCD = {.int_ID=0, .dbl_ID=0.0};
int blocklengths[2]; //this describes how many blocks of identical data types will be in the new MPI_Datatype
MPI_Aint offsets[2]; //this stores the offsets, in bytes(bits?), of the blocks from the 'start' of the datatype
MPI_Datatype block_types[2]; //this stores which built-in data types the blocks are comprised of
MPI_Datatype myMPI_CD; //just the name of the new datatype
MPI_Aint myStruct_address, int_ID_address, dbl_ID_address, int_offset, dbl_offset; //useful place holders for filling the arrays above
// ===========================================================================================================================
#endif
// =================== Initializing MPI functionality ============================
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
// ===============================================================================
#if FULL_PROGRAM
// ================== This part actually formally defines the MPI datatype ===============================================
MPI_Get_address(&sampleCD, &myStruct_address); //starting point of struct CD
MPI_Get_address(&sampleCD.int_ID, &int_ID_address); //starting point of first entry in CD
MPI_Get_address(&sampleCD.dbl_ID, &dbl_ID_address); //starting point of second entry in CD
int_offset = int_ID_address - myStruct_address; //offset from start of first to start of CD
dbl_offset = dbl_ID_address - myStruct_address; //offset from start of second to start of CD
blocklengths[0]=1; blocklengths[1]=1; //array telling it how many blocks of identical data types there are, and the number of entries in each block
//This says there are two blocks of identical data-types, and both blocks have only one variable in them
offsets[0]=int_offset; offsets[1]=dbl_offset; //the first block starts at int_offset, the second block starts at dbl_offset (from 'myData_address'
block_types[0]=MPI_INT; block_types[1]=MPI_DOUBLE; //the first block contains MPI_INT, the second contains MPI_DOUBLE
MPI_Type_create_struct(2, blocklengths, offsets, block_types, &myMPI_CD); //this uses the above arrays to define the MPI_Datatype...an MPI-2 function
MPI_Type_commit(&myMPI_CD); //this is the final step to defining/reserving the data type
// ========================================================================================================================
mylen = myid*2; //each process is told how long its array should be...I used to define that randomly but that just makes things messier
p_lens = (int*) calloc((size_t)numprocs, sizeof(int)); //allocate memory for the number of elements (p_lens) and offsets from the start of the recv buffer(d_disp)
p_disp = (int*) calloc((size_t)numprocs, sizeof(int));
myData = (struct CD*) calloc((size_t)mylen, sizeof(struct CD)); //allocate memory for each process' array
//if mylen==0, 'a unique pointer to the heap is returned'
if(!p_lens) { MPI_Abort(MPI_COMM_WORLD, 1); exit(EXIT_FAILURE); }
if(!p_disp) { MPI_Abort(MPI_COMM_WORLD, 1); exit(EXIT_FAILURE); }
if(!myData) { MPI_Abort(MPI_COMM_WORLD, 1); exit(EXIT_FAILURE); }
for(double temp=0.0;temp<1e6;++temp) temp += exp(-10.0);
MPI_Barrier(MPI_COMM_WORLD); //purely for keeping the output organized by give a delay in time
for (int k=0; k<numprocs; ++k) {
if(myid==k) {
//printf("\t ID %d has %d entries: { ", myid, mylen);
for(int i=0; i<mylen; ++i) {
myData[i]= (struct CD) {.int_ID=myid*(i+1), .dbl_ID=myid*(i+1)}; //fills data elements with simple pattern
//printf("%d: (%d,%lg) ", i, myData[i].int_ID, myData[i].dbl_ID);
}
//printf("}\n");
}
}
for(double temp=0.0;temp<1e6;++temp) temp += exp(-10.0);
MPI_Barrier(MPI_COMM_WORLD); //purely for keeping the output organized by give a delay in time
MPI_Gather(&mylen, 1, MPI_INT, p_lens, 1, MPI_INT, 0, MPI_COMM_WORLD); //Each process sends root the length of the vector they'll be sending
#if 1
MPI_Type_size(myMPI_CD, &MPI_CD_size); //gets the size of the MPI_Datatype for p_disp
#else
MPI_CD_size = sizeof(struct CD); //using this doesn't change things too much...
#endif
for(int j=0;j<numprocs;++j) {
total_len += p_lens[j];
if (j==0) { p_disp[j] = 0; }
else { p_disp[j] = p_disp[j-1] + p_lens[j]*MPI_CD_size; }
}
if (myid==0) {
allData = (struct CD*) calloc((size_t)total_len, sizeof(struct CD)); //allocate array
if(!allData) { MPI_Abort(MPI_COMM_WORLD, 1); exit(EXIT_FAILURE); }
}
MPI_Gatherv(myData, mylen, myMPI_CD, allData, p_lens, p_disp, myMPI_CD, 0, MPI_COMM_WORLD); //each array sends root process their array, which is stored in 'allData'
// ============================== OUTPUT CONFIRMING THAT COMMUNICATIONS WERE SUCCESSFUL=========================================
if(myid==0) {
for(int i=0;i<numprocs;++i) {
printf("\n\tElements from %d on MASTER are: { ",i);
for(int k=0;k<p_lens[i];++k) { printf("%d: (%d,%lg) ", k, (allData+p_disp[i]+k)->int_ID, (allData+p_disp[i]+k)->dbl_ID); }
if(p_lens[i]==0) printf("NOTHING ");
printf("}\n");
}
printf("\n"); //each data element should appear as two identical numbers, counting upward by the process ID
}
// ==========================================================================================================
if (p_lens) { free(p_lens); p_lens=NULL; } //adding this in didn't get rid of the MPI_Finalize seg-fault
if (p_disp) { free(p_disp); p_disp=NULL; }
if (myData) { free(myData); myData=NULL; }
if (allData){ free(allData); allData=NULL; } //the if statement ensures that processes not allocating memory for this pointer don't free anything
for(double temp=0.0;temp<1e6;++temp) temp += exp(-10.0);
MPI_Barrier(MPI_COMM_WORLD); //purely for keeping the output organized by give a delay in time
printf("ID %d: I have reached the end...before MPI_Type_free!\n", myid);
// ====================== CLEAN UP ================================================================================
ERRORCODE = MPI_Type_free(&myMPI_CD); //this frees the data type...not always necessary, but a good practice
for(double temp=0.0;temp<1e6;++temp) temp += exp(-10.0);
MPI_Barrier(MPI_COMM_WORLD); //purely for keeping the output organized by give a delay in time
if(ERRORCODE!=MPI_SUCCESS) { printf("ID %d...MPI_Type_free was not successful\n", myid); MPI_Abort(MPI_COMM_WORLD, 911); exit(EXIT_FAILURE); }
else { printf("ID %d...MPI_Type_free was successful, entering MPI_Finalize...\n", myid); }
#endif
ERRORCODE=MPI_Finalize();
for(double temp=0.0;temp<1e7;++temp) temp += exp(-10.0); //NO MPI_Barrier AFTER MPI_Finalize!
if(ERRORCODE!=MPI_SUCCESS) { printf("ID %d...MPI_Finalize was not successful\n", myid); MPI_Abort(MPI_COMM_WORLD, 911); exit(EXIT_FAILURE); }
else { printf("ID %d...MPI_Finalize was successful\n", myid); }
return EXIT_SUCCESS;
}