回帰モデルの結果から、カテゴリ変数 (4 レベル) と標準化された連続変数の交互作用の勾配の違いまたは類似度を視覚的に表示する交互作用プロットを作成したいと考えています。
with(GLMModel, interaction.plot(continuous.var, categorical.var, response.var))
私が探しているものではありません。連続変数の値ごとに勾配が変化するプロットが作成されます。次のプロットのように、勾配が一定のプロットを作成しようとしています。
何か案は?
フォームのモデルに適合しますfit<-glmer(resp.var ~ cont.var*cat.var + (1|rand.eff) , data = sample.data , poisson)
ここにいくつかのサンプルデータがあります:
structure(list(cat.var = structure(c(4L, 4L, 1L, 4L, 1L, 2L,
1L, 1L, 1L, 1L, 4L, 1L, 1L, 3L, 2L, 4L, 1L, 1L, 1L, 2L, 1L, 2L,
2L, 1L, 3L, 1L, 1L, 2L, 4L, 1L, 2L, 1L, 1L, 4L, 1L, 3L, 1L, 3L,
3L, 4L, 3L, 4L, 1L, 3L, 3L, 1L, 2L, 3L, 4L, 3L, 4L, 2L, 1L, 1L,
4L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 1L, 4L, 4L, 3L, 3L, 1L, 3L, 3L,
3L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 4L, 1L, 3L, 4L, 1L, 1L, 4L,
1L, 3L, 1L, 1L, 3L, 2L, 4L, 1L, 4L, 1L, 4L, 4L, 4L, 4L, 2L, 4L,
4L, 1L, 2L, 1L, 4L, 3L, 1L, 1L, 3L, 2L, 4L, 4L, 1L, 4L, 1L, 3L,
2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 4L, 1L,
2L, 2L, 1L, 1L, 2L, 3L, 1L, 4L, 4L, 4L, 1L, 4L, 4L, 3L, 2L, 4L,
1L, 3L, 1L, 1L, 4L, 4L, 2L, 4L, 1L, 1L, 3L, 4L, 2L, 1L, 3L, 3L,
4L, 3L, 2L, 3L, 1L, 4L, 2L, 2L, 1L, 4L, 1L, 2L, 3L, 4L, 1L, 4L,
2L, 1L, 3L, 3L, 3L, 4L, 1L, 1L, 1L, 3L, 1L, 3L, 4L, 2L, 1L, 4L,
1L, 1L, 1L, 2L, 1L, 1L, 4L, 1L, 3L, 1L, 2L, 1L, 4L, 1L, 2L, 4L,
1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 3L, 4L, 1L, 4L, 3L,
3L, 3L, 4L, 1L, 3L, 1L, 1L, 4L, 4L, 4L, 4L, 2L, 1L, 1L, 3L, 2L,
1L, 4L, 4L, 2L, 4L, 2L, 4L, 1L, 3L, 4L, 1L, 1L, 2L, 3L, 2L, 4L,
1L, 1L, 3L, 4L, 2L, 2L, 3L, 4L, 1L, 2L, 3L, 1L, 2L, 4L, 1L, 4L,
2L, 4L, 3L, 4L, 2L, 1L, 1L, 1L, 1L, 1L, 4L, 4L, 1L, 4L, 4L, 1L,
4L, 2L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 3L, 3L, 2L, 2L, 1L, 1L, 4L,
1L, 4L, 3L, 1L, 2L, 1L, 4L, 2L, 4L, 4L, 1L, 2L, 1L, 1L, 1L, 4L,
1L, 4L, 1L, 2L, 1L, 3L, 1L, 3L, 3L, 1L, 1L, 4L, 3L, 1L, 4L, 1L,
2L, 4L, 1L, 1L, 3L, 3L, 2L, 4L, 4L, 1L, 1L, 2L, 2L, 1L, 2L, 4L,
3L, 4L, 4L, 4L, 4L, 1L, 3L, 1L, 2L, 2L, 2L, 4L, 2L, 3L, 4L, 1L,
3L, 2L, 2L, 1L, 1L, 1L, 3L, 1L, 2L, 2L, 1L, 1L, 3L, 2L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 4L, 4L, 4L, 3L, 3L, 2L, 1L, 3L, 2L, 1L,
1L, 1L, 4L, 1L, 1L, 2L, 3L, 1L, 1L, 2L, 4L, 3L, 2L, 4L, 3L, 2L,
1L, 3L, 1L, 3L, 1L, 4L, 3L, 1L, 4L, 4L, 2L, 4L, 1L, 1L, 2L, 4L,
4L, 2L, 3L, 4L, 4L, 3L, 1L, 4L, 1L, 2L, 4L, 1L, 1L, 4L, 1L, 1L,
1L, 1L, 1L, 3L, 4L, 1L, 4L, 4L, 2L, 2L, 2L, 2L, 3L, 4L, 4L, 1L,
1L, 4L, 2L, 3L, 3L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 3L, 4L, 2L,
3L, 1L, 1L, 1L, 4L, 1L, 1L, 4L, 4L, 4L, 1L, 1L, 1L, 1L), .Label = c("A",
"B", "C", "D"), class = "factor"), cont.var = c(-0.0682900527296927,
0.546320421837542, -0.273160210918771, -0.887770685486005, 0.136580105459385,
0.75119058002662, 0.546320421837542, -0.273160210918771, -0.682900527296927,
0.136580105459385, 0.75119058002662, 0.75119058002662, 0.75119058002662,
0.341450263648464, 0.75119058002662, 0.546320421837542, 0.546320421837542,
-0.478030369107849, -0.478030369107849, -0.682900527296927, -0.682900527296927,
0.546320421837542, -0.478030369107849, -0.0682900527296927, 0.136580105459385,
0.136580105459385, 0.75119058002662, -0.478030369107849, 0.75119058002662,
-0.887770685486005, 0.136580105459385, -0.478030369107849, 0.341450263648464,
-0.682900527296927, -0.478030369107849, 0.341450263648464, -0.478030369107849,
0.546320421837542, 0.75119058002662, -0.478030369107849, -0.273160210918771,
0.546320421837542, -0.682900527296927, 0.75119058002662, -0.478030369107849,
-0.887770685486005, 0.136580105459385, -0.887770685486005, -0.0682900527296927,
-0.478030369107849, 0.546320421837542, 0.75119058002662, 0.136580105459385,
-0.273160210918771, -0.273160210918771, 0.75119058002662, -0.682900527296927,
0.136580105459385, -0.273160210918771, -0.273160210918771, 0.136580105459385,
0.136580105459385, 0.341450263648464, 0.136580105459385, -0.273160210918771,
-0.273160210918771, -0.682900527296927, -0.887770685486005, -0.0682900527296927,
0.136580105459385, -0.0682900527296927, -0.273160210918771, -0.273160210918771,
0.341450263648464, 0.75119058002662, -0.682900527296927, -0.0682900527296927,
-0.273160210918771, -0.887770685486005, -0.0682900527296927,
0.75119058002662, 0.546320421837542, 0.75119058002662, 0.75119058002662,
-0.887770685486005, 0.341450263648464, 0.75119058002662, -0.887770685486005,
0.136580105459385, -0.273160210918771, 0.546320421837542, 0.546320421837542,
-0.682900527296927, 0.75119058002662, 0.136580105459385, -0.0682900527296927,
-0.478030369107849, 0.75119058002662, -0.478030369107849, 0.341450263648464,
0.136580105459385, -0.0682900527296927, -0.478030369107849, -0.0682900527296927,
-0.0682900527296927, 0.546320421837542, -0.273160210918771, 0.75119058002662,
0.341450263648464, 0.546320421837542, -0.478030369107849, 0.136580105459385,
-0.887770685486005, -0.273160210918771, -0.273160210918771, -0.478030369107849,
-0.478030369107849, 0.75119058002662, -0.682900527296927, -0.0682900527296927,
0.546320421837542, 0.75119058002662, 0.546320421837542, 0.136580105459385,
-0.478030369107849, 0.136580105459385, 0.546320421837542, -0.478030369107849,
-0.0682900527296927, -0.0682900527296927, 0.546320421837542,
-0.273160210918771, 0.136580105459385, -0.0682900527296927, 0.75119058002662,
-0.0682900527296927, 0.546320421837542, -0.887770685486005, -0.0682900527296927,
-0.682900527296927, -0.478030369107849, -0.478030369107849, -0.682900527296927,
0.75119058002662, 0.341450263648464, -0.0682900527296927, 0.341450263648464,
-0.0682900527296927, -0.887770685486005, -0.887770685486005,
-0.273160210918771, -0.0682900527296927, 0.546320421837542, -0.0682900527296927,
-0.0682900527296927, 0.75119058002662, -0.0682900527296927, -0.273160210918771,
-0.478030369107849, 0.546320421837542, 0.546320421837542, 0.546320421837542,
0.341450263648464, 0.136580105459385, -0.478030369107849, 0.136580105459385,
0.136580105459385, 0.136580105459385, -0.478030369107849, -0.273160210918771,
-0.273160210918771, -0.273160210918771, 0.341450263648464, -0.273160210918771,
-0.0682900527296927, 0.136580105459385, 0.546320421837542, -0.478030369107849,
-0.273160210918771, 0.546320421837542, 0.546320421837542, -0.273160210918771,
-0.0682900527296927, 0.341450263648464, 0.546320421837542, -0.0682900527296927,
0.136580105459385, -0.478030369107849, 0.75119058002662, -0.478030369107849,
-0.682900527296927, -0.478030369107849, 0.136580105459385, -0.273160210918771,
-0.0682900527296927, -0.887770685486005, -0.887770685486005,
0.546320421837542, -0.273160210918771, 0.546320421837542, -0.478030369107849,
0.546320421837542, -0.0682900527296927, 0.75119058002662, -0.273160210918771,
0.546320421837542, 0.341450263648464, -0.0682900527296927, -0.0682900527296927,
-0.0682900527296927, -0.887770685486005, 0.136580105459385, -0.273160210918771,
-0.478030369107849, 0.75119058002662, 0.341450263648464, 0.546320421837542,
-0.273160210918771, 0.546320421837542, 0.75119058002662, -0.273160210918771,
0.75119058002662, 0.546320421837542, -0.273160210918771, -0.273160210918771,
0.75119058002662, -0.273160210918771, -0.0682900527296927, 0.136580105459385,
-0.478030369107849, 0.75119058002662, 0.75119058002662, -0.887770685486005,
-0.887770685486005, 0.546320421837542, -0.682900527296927, -0.887770685486005,
0.136580105459385, 0.75119058002662, 0.75119058002662, -0.478030369107849,
0.136580105459385, 0.75119058002662, -0.273160210918771, -0.682900527296927,
-0.273160210918771, 0.136580105459385, 0.546320421837542, -0.682900527296927,
-0.478030369107849, 0.136580105459385, -0.682900527296927, -0.0682900527296927,
-0.478030369107849, 0.136580105459385, -0.887770685486005, -0.273160210918771,
-0.0682900527296927, -0.273160210918771, -0.887770685486005,
0.546320421837542, 0.546320421837542, -0.478030369107849, -0.273160210918771,
-0.0682900527296927, 0.136580105459385, -0.478030369107849, 0.75119058002662,
0.341450263648464, 0.136580105459385, 0.136580105459385, 0.75119058002662,
0.136580105459385, -0.0682900527296927, 0.546320421837542, -0.0682900527296927,
-0.887770685486005, 0.75119058002662, 0.75119058002662, 0.546320421837542,
-0.887770685486005, -0.0682900527296927, -0.682900527296927,
-0.682900527296927, 0.75119058002662, 0.75119058002662, -0.478030369107849,
0.546320421837542, -0.273160210918771, 0.75119058002662, -0.0682900527296927,
0.546320421837542, -0.0682900527296927, -0.273160210918771, 0.546320421837542,
0.75119058002662, -0.0682900527296927, 0.546320421837542, -0.682900527296927,
-0.273160210918771, -0.0682900527296927, -0.478030369107849,
-0.478030369107849, 0.136580105459385, -0.273160210918771, 0.136580105459385,
0.546320421837542, 0.75119058002662, -0.273160210918771, 0.341450263648464,
-0.273160210918771, 0.136580105459385, 0.546320421837542, 0.546320421837542,
0.136580105459385, 0.136580105459385, -0.682900527296927, 0.341450263648464,
0.341450263648464, -0.273160210918771, -0.682900527296927, -0.0682900527296927,
0.75119058002662, -0.887770685486005, -0.478030369107849, -0.273160210918771,
-0.478030369107849, -0.478030369107849, 0.136580105459385, -0.478030369107849,
0.136580105459385, -0.478030369107849, 0.136580105459385, -0.0682900527296927,
-0.273160210918771, 0.136580105459385, 0.341450263648464, -0.478030369107849,
0.75119058002662, 0.136580105459385, 0.341450263648464, 0.546320421837542,
-0.887770685486005, 0.75119058002662, 0.341450263648464, -0.0682900527296927,
-0.478030369107849, 0.546320421837542, 0.136580105459385, -0.682900527296927,
-0.0682900527296927, 0.341450263648464, -0.478030369107849, -0.0682900527296927,
-0.478030369107849, -0.0682900527296927, 0.341450263648464, -0.478030369107849,
-0.682900527296927, 0.75119058002662, -0.478030369107849, -0.682900527296927,
0.341450263648464, -0.887770685486005, -0.478030369107849, 0.546320421837542,
-0.887770685486005, -0.478030369107849, -0.478030369107849, 0.341450263648464,
0.75119058002662, -0.682900527296927, 0.75119058002662, 0.75119058002662,
0.341450263648464, -0.0682900527296927, 0.546320421837542, -0.0682900527296927,
0.136580105459385, 0.136580105459385, 0.136580105459385, 0.136580105459385,
0.546320421837542, 0.546320421837542, -0.0682900527296927, 0.75119058002662,
-0.0682900527296927, -0.0682900527296927, -0.682900527296927,
-0.273160210918771, -0.682900527296927, -0.478030369107849, 0.136580105459385,
0.75119058002662, 0.546320421837542, 0.341450263648464, -0.887770685486005,
-0.0682900527296927, 0.136580105459385, 0.75119058002662, -0.273160210918771,
-0.682900527296927, 0.136580105459385, -0.478030369107849, -0.273160210918771,
-0.273160210918771, 0.136580105459385, 0.341450263648464, -0.478030369107849,
-0.0682900527296927, -0.682900527296927, 0.75119058002662, -0.273160210918771,
-0.478030369107849, -0.0682900527296927, -0.0682900527296927,
-0.273160210918771, -0.0682900527296927, -0.478030369107849,
0.75119058002662, -0.0682900527296927, 0.136580105459385, 0.546320421837542,
0.546320421837542, -0.478030369107849, -0.273160210918771, 0.546320421837542,
-0.478030369107849, -0.682900527296927, 0.75119058002662, -0.0682900527296927,
-0.682900527296927, -0.682900527296927, 0.75119058002662, 0.341450263648464,
-0.478030369107849, 0.75119058002662, 0.136580105459385, -0.887770685486005,
0.341450263648464, 0.341450263648464, 0.546320421837542, -0.273160210918771,
0.136580105459385, 0.75119058002662, -0.0682900527296927, -0.682900527296927,
-0.478030369107849, -0.478030369107849, 0.75119058002662, 0.546320421837542,
-0.478030369107849, 0.546320421837542, 0.136580105459385, -0.887770685486005,
0.75119058002662, -0.0682900527296927, 0.75119058002662, 0.75119058002662,
-0.273160210918771, -0.682900527296927, 0.546320421837542, 0.546320421837542,
-0.887770685486005, 0.75119058002662, -0.273160210918771, 0.546320421837542,
-0.0682900527296927, 0.136580105459385, 0.341450263648464, -0.478030369107849,
0.136580105459385, 0.136580105459385, -0.273160210918771, 0.546320421837542,
-0.273160210918771, -0.273160210918771, -0.273160210918771, 0.75119058002662,
-0.887770685486005, -0.887770685486005, -0.0682900527296927,
-0.478030369107849, -0.0682900527296927, 0.75119058002662, -0.273160210918771,
0.136580105459385, -0.478030369107849, -0.273160210918771, 0.136580105459385,
0.75119058002662, 0.546320421837542, -0.478030369107849, -0.273160210918771,
-0.273160210918771, 0.136580105459385, -0.273160210918771, -0.0682900527296927,
0.75119058002662, 0.136580105459385), resp.var = c(2L, 1L, 0L,
1L, 0L, 0L, 0L, 0L, 0L, 1L, 3L, 1L, 0L, 1L, 0L, 1L, 2L, 0L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 2L,
1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 2L,
0L, 3L, 2L, 0L, 2L, 2L, 0L, 0L, 0L, 1L, 1L, 3L, 1L, 2L, 0L, 1L,
0L, 0L, 1L, 0L, 2L, 0L, 2L, 4L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 2L,
3L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 2L,
0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 2L, 0L, 1L, 0L, 4L, 1L, 0L,
1L, 1L, 0L, 0L, 0L, 1L, 3L, 0L, 2L, 0L, 0L, 2L, 1L, 0L, 0L, 2L,
0L, 0L, 0L, 2L, 0L, 0L, 3L, 0L, 0L, 2L, 1L, 1L, 0L, 0L, 3L, 1L,
1L, 2L, 0L, 2L, 0L, 2L, 2L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 2L, 2L, 1L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, 6L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L,
1L, 0L, 0L, 1L, 3L, 1L, 0L, 2L, 3L, 0L, 0L, 1L, 0L, 0L, 1L, 1L,
0L, 0L, 0L, 0L, 1L, 2L, 1L, 1L, 0L, 0L, 2L, 0L, 2L, 0L, 0L, 1L,
1L, 0L, 0L, 2L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 1L, 0L, 2L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L,
0L, 3L, 0L, 0L, 3L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 2L, 1L, 1L, 0L, 2L, 2L, 0L, 2L, 1L, 0L, 2L, 0L, 0L, 0L, 0L,
3L, 0L, 2L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 2L, 0L, 1L, 1L, 0L, 1L,
0L, 3L, 1L, 3L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 2L, 0L,
2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 2L, 0L, 3L, 0L, 0L, 0L,
0L, 1L, 0L, 0L, 3L, 1L, 1L, 2L, 0L, 0L, 3L, 0L, 0L, 0L, 1L, 1L,
0L, 1L, 3L, 0L, 2L, 0L, 0L, 1L, 3L, 1L, 0L, 0L, 4L, 3L, 0L, 2L,
0L, 0L, 0L, 3L, 0L, 0L, 2L, 3L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 3L, 3L, 2L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 2L, 0L, 0L,
0L, 0L, 0L, 1L, 0L, 2L, 0L, 0L, 1L, 0L, 0L, 1L, 2L, 0L, 1L, 0L,
2L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 3L, 1L, 0L, 0L, 0L, 0L, 0L,
1L, 2L, 0L, 2L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L,
0L, 0L, 3L, 2L, 2L, 0L, 1L, 0L, 5L, 0L, 4L, 2L, 0L, 3L, 0L, 0L,
1L, 1L, 0L, 0L, 0L, 2L, 0L, 1L, 0L, 3L, 0L, 2L, 0L, 0L, 0L, 2L,
0L), rand.eff = c(37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L,
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L,
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L,
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L,
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L,
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L,
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L,
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L,
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L,
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L,
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L,
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L,
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L,
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L,
37L, 37L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L,
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L,
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L,
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L,
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L,
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L,
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L,
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L,
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L,
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L,
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L,
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L,
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L,
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L,
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L,
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L,
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L,
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L,
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L,
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L,
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L,
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L,
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L,
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L,
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L)), .Names = c("cat.var",
"cont.var", "resp.var", "rand.eff"), row.names = c(NA, 500L), class = "data.frame")