したがって、ここにあるプログラムはコンパイルされますが、クラス オブジェクトを作成するとすぐにクラッシュします。つまり、main.cpp で「AVLTree obj;」と言うと、プログラムがクラッシュします....それを省略しても、すべて問題ありません...助けていただければ幸いです。
ありがとうございました。// 以下メイン
using namespace std;
int main()
{
cout << "******************************" << endl;
cout << " Self Balancing AVL Tree " << endl;
cout << "******************************" << endl;
/** AVLtree obj;
obj.insert(100);
obj.insert(20);
obj.insert(25);
obj.insert(200);
assert isEmpty();
obj.preOrderPrint(*root);
obj.inOrderPint(*root);
obj.postOrderPrint(*root);
obj.remove(20);
*/
return 0;
}
ヘッダ
#ifndef AVLTREE_H
#define AVLTREE_H
//Moved this outside of the class trying to get things running
struct TreeNode
{
int key;
int data;
TreeNode *parent;
TreeNode *right;
TreeNode *left;
char factor; //byte
};
//-------------------------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------------------------------------- s
class AVLtree
{
private:
protected:
//neccessary tree nodes
TreeNode *root;
TreeNode *tmp, *node;
TreeNode *holder1, *holder2, *holder3, *newnode;
int tmpdata;
bool h;
int height(TreeNode * pos) const;
int max(int a, int b) const;
//Rotate functions broken up individually and used within the
//insert function. Was having pointer issues when insert was
//all one function
TreeNode * singleRotateLeft(TreeNode *holder2);
TreeNode * singleRotateRight(TreeNode *holder2);
TreeNode * doubleRotateLeft(TreeNode *holder2);
TreeNode * doubleRotateRight(TreeNode *holder2);
TreeNode * _insert(int key, TreeNode * node);
TreeNode * _remove(int key, TreeNode * node);
public:
AVLtree();
void insert(int key, int data);
bool isEmpty();
void remove(int key);
int retrieve(int key);
void preOrderPrint(TreeNode *root)const;
void inOrderPrint(TreeNode *root)const;
void postOrderPrint(TreeNode *root)const;
int size;
};
#endif // AVLTREE_H
ヘッダーの CPP
#include "avltree.h"
#include <cstdio>
#include <iostream>
using namespace std;
//-------------------------------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------------------------------
AVLtree::AVLtree()
{
size = 0;
//Initialize values
root = NULL;
root->left = NULL;
root->right = NULL;
root->parent = NULL;
}
//-------------------------------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------------------------------
int AVLtree::retrieve(int key)
{
//height of 0 means the tree must be empty
if(size == 0)
{
return NULL;
}
tmp = root;
//While not empty search both sides of tree for key
while(tmp != NULL)
{
if(key < tmp->key)
tmp = tmp->left;
else if(key > tmp->key)
tmp = tmp->right;
else
return tmp->data;
}
return NULL;
}
//Simple bool determining if the tree is empty via the root
bool AVLtree::isEmpty()
{
if(root == NULL)
{
cout << "The Tree Is Empty!! " << endl;
return true;
}
else
{
cout << "The Tree Is NOT Empty" << endl;
return false;
}
}
//-------------------------------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------------------------------
int AVLtree::height( TreeNode * pos ) const
{
if( pos == NULL )
return -1;
else
return pos->factor;
}
//-------------------------------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------------------------------
int AVLtree::max( int a, int b ) const
{
return a > b ? a : b;
}
//-------------------------------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------------------------------
TreeNode * AVLtree::singleRotateLeft(TreeNode *holder2)
{
holder1 = holder2->left;
holder2->left = holder1->right;
holder1->right = holder2;
holder2->factor = max(height(holder2->left), height(holder2->right))+1;
holder1->factor = max(height(holder1->left), holder2->factor)+1;
return holder1; // new root
}
//-------------------------------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------------------------------
TreeNode * AVLtree::singleRotateRight(TreeNode *holder1)
{
holder2 = holder1->right;
holder1->right = holder2->left;
holder2->left = holder1;
holder1->factor = max(height(holder1->left), height(holder1->right))+1;
holder2->factor = max(height(holder2->right), holder1->factor)+1;
return holder2; // new root
}
//-------------------------------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------------------------------
TreeNode * AVLtree::doubleRotateLeft(TreeNode *holder3)
{
holder3->left = singleRotateRight(holder3->left);
return singleRotateLeft(holder3);
}
//-------------------------------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------------------------------
TreeNode * AVLtree::doubleRotateRight(TreeNode *holder1)
{
holder1->right = singleRotateLeft(holder1->right);
return singleRotateRight(holder1);
}
//-------------------------------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------------------------------
void AVLtree::insert(int key, int data)
{
size++;
tmpdata = data;
root =_insert(key,root);
}
//-------------------------------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------------------------------
TreeNode * AVLtree::_insert(int key, TreeNode * node)
{
//Empty case, create a new tree
if (node == NULL)
{
node = new TreeNode;
node->factor = 0;
node->key = key;
node->data = tmpdata;
node->left = NULL;
node->right = NULL;
// if(size==1)
// root=node;
}
//Key is less than, move down the left child
else if(key < node->key)
{
node->left= _insert(key,node->left);
if(height(node->left) - height(node->right) == 2)
{
if(key < node->left->key)
node = singleRotateLeft(node);
else
node = doubleRotateLeft(node);
}
}
//Key is greater than move down the right child
else if(key > node->key)
{
node->right= _insert(key,node->right);
if(height(node->right) - height(node->left) == 2)
{
if(key > node->right->key)
node = singleRotateRight(node);
else
node = doubleRotateRight(node);
}
}
// node->factor=-1;
// if(node->left!=NULL)
// node->factor=node->left->factor;
// if(node->right!=NULL)
// node->factor=max(node->factor, node->right->factor);
node->factor = max(height(node->left ),height(node->right))+1;
return node;
}
//-------------------------------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------------------------------
void AVLtree::preOrderPrint(TreeNode *node) const
{
//Empty node returns out
if(node == NULL) return;
//print the contents of the node specified
cout << node->data << " ";
//Navigate and display left subtree
preOrderPrint(node->left);
//Followed by the right subtree
preOrderPrint(node->right);
}
void AVLtree::inOrderPrint(TreeNode *node) const
{
if(node == NULL) return;
inOrderPrint(node->left);
// Root middle value is displayed in the middle of the printing
//operation
cout << node->data << " ";
inOrderPrint(node->right); // Left childeren last to be printed
}
void AVLtree::postOrderPrint(TreeNode *node) const
{
if(node == NULL) return; // Empty tree returns
postOrderPrint(node->left); //Display left side subtree
postOrderPrint(node->right); // Followed by right side subtree
cout << node->data << " "; //Finish with root
}
void AVLtree::remove(int key)
{
root =_remove(key,root);
}
//-------------------------------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------------------------------
TreeNode * AVLtree::_remove(int key, TreeNode * node)
{
//temp bool determining state of removal
bool done = false;
//Empty case there is nothing to do, return done immediately
if (node == NULL)
{
h = false;
done = true;
}
else
//If key data is less than the current node
if (key < node->key) //delete from left subtree
{
newnode =_remove(key,node->left);
node->left = newnode;
if(h)
{
//Check for height imbalance
if(height(node->right) - height(node->left) == 2)
{
if(height(node->right) > height(node->left))
node = singleRotateLeft(node);
else
node = singleRotateRight(node);
}
node->factor = max(height(node->left ),height(node->right))+1;
if (node->factor >= 0)
{
node->factor = root->factor -1;
if (node->factor == -1)
h = false;
}
else if (node->right->factor == -1)
singleRotateRight(node);
else
singleRotateLeft(node);
done = true;
return node;
}
}
else if (key == node->key) //del node
{
if (node->left == NULL || node->right == NULL) // one or no children
{
if (node->left == NULL)
holder1 = node->right;
else
holder1 = node->left;
delete node;
h = true; done = true;
return(holder1);
}
else // both of children
{
holder2 = node->right;
while (holder2->left != NULL)
holder2 = holder2->left;
node->key = holder2->key;
key = node->key;
}
}
if (!done && key >= node->key) // delete from right subtree
{
newnode=_remove(key, node->right);
node->right = newnode;
if (h)
{
if(height(node->right) - height(node->left) == 2)
{
if(height(node->right) > height(node->left))
node = singleRotateLeft(node);
else
node = singleRotateRight(node);
}
node->factor = max(height(node->left ),height(node->right))+1;
//
/* if (node->factor <= 0)
{
node->factor=node->factor+1;
if (node->factor ==1)
h=false;
}
else if (node->right->factor==1)
singleRotateLeft(node);
else
singleRotateRight(node);*/
return node;
}
}
}
//-------------------------------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------------------------------