これは私の宿題の問題です。このような問題を解決する方法についてはよくわかりません。
If T(n) = nT(n - 1) and T(1) = 3, then
a) T(n) = O(n^n)
b) T(n) = Ω(n!)
c) T(n) = O(2^(nlogn))
d) none of the above
この問題に対する正確な答えは必要ありませんが(宿題なので)、再帰関数の境界を伝える方法を知りたいです。
For n = 4:
T(4) = 4 * T(4-1)
T(3) = 3 * T(3-1)
T(2) = 2 * T(2-1)
T(1) = 3
The execution time is 2 steps for every call ( the multiplication and the recursive call). For the given example, for 4 calls you will have 8 steps which are linearly executed (you don't have any combinatorial or logarithmic algorithm, so your function is bounded by O(n).
For the possible choices you have the answers would be:
a) T(4) = O(4^4) -> 256
b) T(4) = Ω(4!) -> 24
c) T(4) = O(2^(4log4)) ~> 5.27
d) none of the above
So your choice should be d. Hopes it helps.