アップデート:大量のデータ(15,000以上のアイテム)が関係しているため、以下の問題を現在の形式では回答できないことに気付きました。私が支援しようとしているグループは、1か月間実行した後、結果を使用するためにグループを終了します(そのため、より多くの結果をより早く取得したいと考えていました)。彼らは最初の数セットのデータしか使用していないので、これは私には非常識に思えます(大きなリストの最後の項目は決して使用されません)。したがって、この質問を修正して、意図した出力のサンプルを取得します(完全なソリューションではなくソリューションの近似)。短時間でこれを完了するための最良の方法は何ですか?彼らは結果の多様なサンプルを望んでいるようです、それは遺伝的アルゴリズムが機能するのか、それともある種のサンプリング技術なのか?残りの質問は同じままです(同じ入力/出力)が、私は
私の問題は、正確にはナップサック問題ではありませんが、かなり近い問題です。基本的に、私は特定の値に等しいXアイテムのすべての組み合わせを見つけようとしています。この問題は、このプロセスが実行され、完了するまでに約25日かかった小さな学校の研究所で働いていた私の友人から聞いたものです。本当にひどいようだったので、私は助けることを申し出ました(私には利益があります、私はいくつかの本当に素晴らしい人々を学び、助けることができます)、それで私はそれをマルチスレッド化することによってそれをスケーリングする方法を考え出しました(私は以下のコードを含めます)、これ処理時間を数日短縮しましたが、それでも満足できなかったので、GPUで動作するようにコードを移植しましたが、満足していません(ただし、高速で古いビデオカードを寄付したので満足しています)。私はハードウェアを利用しているだけで、実際にはアルゴリズムを利用していません。たった今、
それで、その背景で、アルゴリズム的にそれをスピードアップするために私ができることはありますか?すべての組み合わせが必要なので、論理的にはコンピューターがすべての組み合わせ(数十億)を処理する必要があるように思われるので、私の腸は私にノーと言いますが、私は以前にここで驚くべきことを見てきました、そして少しのスピードアップでも処理の日数に違いをもたらすことができます。
私は10以上のバージョンのコードが好きですが、これはマルチスレッドを使用するJavaバージョンです(ただし、これとGPUの間のロジックはほとんど同じです)。
基本ロジック:
for (int c = 100; c >= 0; c--) {
if (c * x_k == current.sum) { //if result is correct then save
solutions.add(new Context(0, 0, newcoeff));
continue;
} else if (current.k > 0) { //if result is not equal but not end of list then send to queue
contexts.add(new Context(current.k - 1, current.sum - c * x_k, newcoeff));
}
}
完全なコード:
import java.util.Arrays;
import java.util.ArrayDeque;
import java.util.Queue;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
public class MixedParallel
{
// pre-requisite: sorted values !!
private static final int[] data = new int[] { -5,10,20,30,35 };
// Context to store intermediate computation or a solution
static class Context {
int k;
int sum;
int[] coeff;
Context(int k, int sum, int[] coeff) {
this.k = k;
this.sum = sum;
this.coeff = coeff;
}
}
// Thread pool for parallel execution
private static ExecutorService executor;
// Queue to collect solutions
private static Queue<Context> solutions;
static {
final int numberOfThreads = 2;
executor =
new ThreadPoolExecutor(numberOfThreads, numberOfThreads, 1000, TimeUnit.SECONDS,
new LinkedBlockingDeque<Runnable>());
// concurrent because of multi-threaded insertions
solutions = new ConcurrentLinkedQueue<Context>();
}
public static void main(String[] args)
{
System.out.println("starting..");
int target_sum = 100;
// result vector, init to 0
int[] coeff = new int[data.length];
Arrays.fill(coeff, 0);
mixedPartialSum(data.length - 1, target_sum, coeff);
executor.shutdown();
// System.out.println("Over. Dumping results");
while(!solutions.isEmpty()) {
Context s = solutions.poll();
printResult(s.coeff);
}
}
private static void printResult(int[] coeff) {
StringBuffer sb = new StringBuffer();
for (int i = coeff.length - 1; i >= 0; i--) {
if (coeff[i] > 0) {
sb.append(data[i]).append(" * ").append(coeff[i]).append(" + ");
}
}
System.out.println(sb);
}
private static void mixedPartialSum(int k, int sum, int[] coeff) {
int x_k = data[k];
for (int c = 0; c <= 100; c++) {
coeff[k] = c;
int[] newcoeff = Arrays.copyOf(coeff, coeff.length);
if (c * x_k == sum) {
//printResult(newcoeff);
solutions.add(new Context(0, 0, newcoeff));
continue;
} else if (k > 0) {
if (data.length - k < 2) {
mixedPartialSum(k - 1, sum - c * x_k, newcoeff);
// for loop on "c" goes on with previous coeff content
} else {
// no longer recursive. delegate to thread pool
executor.submit(new ComputePartialSum(new Context(k - 1, sum - c * x_k, newcoeff)));
}
}
}
}
static class ComputePartialSum implements Callable<Void> {
// queue with contexts to process
private Queue<Context> contexts;
ComputePartialSum(Context request) {
contexts = new ArrayDeque<Context>();
contexts.add(request);
}
public Void call() {
while(!contexts.isEmpty()) {
Context current = contexts.poll();
int x_k = data[current.k];
for (int c = 0; c <= 100; c++) {
current.coeff[current.k] = c;
int[] newcoeff = Arrays.copyOf(current.coeff, current.coeff.length);
if (c * x_k == current.sum) {
//printResult(newcoeff);
solutions.add(new Context(0, 0, newcoeff));
continue;
} else if (current.k > 0) {
contexts.add(new Context(current.k - 1, current.sum - c * x_k, newcoeff));
}
}
}
return null;
}
}
}
データ/アプローチの特徴のいくつかを次に示します。
- すべての数値はショートパンツです(+/- 200の値を超える数値はないようです)
- 重複があります(ただし、ゼロ値はありません)
- forループは、係数を100に制限します(これは難しい数値であり、変更されないことを示しています)。これは結果を制限します
- アイテムの数には制限がありますが、その変数は私の友人の研究室によって決定されました。私は2ペアの組み合わせでテストしてきましたが、友人は30〜35ペアを使用していると言いました(データセット全体を含む組み合わせではありません)。これはまた、制御不能からの結果を制限します
- 私の友人は、彼らが行う後処理には、30未満または35を超える係数を含むすべての結果を削除することが含まれると述べました。私の現在のコードでは、
newcoeff
変数が数値(この場合は35)を超えると壊れますが、処理さえしない方法があるかもしれません結果は30未満です。これは、処理時間を短縮するための大きな領域になる可能性があります。今のところ、彼らは彼らが望むものに到達するために多くの役に立たないデータを生成しているようです。 - 彼らのデータセットは10k-15kのアイテム(ネガティブ/ポジティブ)
- 私は3つのアイテム、2つのリスト(1つのデータとデータを識別するための1つのID番号)と目標合計のみを受け取ります。次に、そのリスト内のデータのすべての組み合わせを含むファイルを保存します。
- この部分に最も時間がかかったので、私はここで支援を申し出ました。データが私に届く前に、彼らはそれに何かをし(彼らはデータを自分で生成しませんが)、ファイルを送信すると、彼らはそれに独自のロジックを適用して処理しますそれ。したがって、私の唯一の焦点は、3つの入力を取得し、出力ファイルを生成することです。
- スレッド化とGPUを使用することで、問題は1週間以内に完了するようになりましたが、ここで探しているのは、アルゴリズムを改善して、ハードウェアGPUだけでなくソフトウェアを活用して速度を上げるアイデアです。コードからわかるように、今はブルートフォース攻撃です。理想的には、スレッド化可能な提案が必要です。
Update2:問題自体は非常に簡単/一般的だと思いますが、問題は大規模に実行されているため、テストを行ったときに取得した実際のデータは次のとおりです(取得するほど大きくはありませんが、約3,000項目なので、必要に応じて自分で生成する必要がないことをテストします):
private static final int target_sum = 5 * 1000;
private static final List<Integer> data = Arrays.asList( -193, -138, -92, -80, -77, -70, -63, -61, -60, -56, -56, -55, -54, -54, -51, -50, -50, -50, -49, -49, -48, -46, -45, -44, -43, -43, -42, -42, -42, -42, -41, -41, -40, -40, -39, -38, -38, -38, -37, -37, -37, -37, -37, -36, -36, -36, -35, -34, -34, -34, -34, -34, -34, -34, -33, -33, -33, -32, -32, -32, -32, -32, -32, -32, -32, -31, -31, -31, -31, -31, -31, -31, -30, -30, -30, -30, -30, -29, -29, -29, -29, -29, -29, -29, -29, -29, -28, -28, -28, -28, -27, -27, -27, -27, -26, -26, -26, -26, -26, -26, -25, -25, -25, -25, -25, -25, -25, -25, -24, -24, -24, -24, -24, -24, -24, -24, -24, -24, -23, -23, -23, -23, -23, -23, -23, -23, -22, -22, -22, -22, -22, -22, -22, -22, -22, -21, -21, -21, -21, -21, -21, -21, -20, -20, -20, -20, -20, -20, -20, -19, -19, -19, -19, -19, -19, -19, -19, -19, -19, -19, -19, -19, -19, -18, -18, -18, -18, -18, -18, -18, -18, -18, -18, -18, -18, -18, -18, -18, -18, -18, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -16, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 30, 30, 30, 30, 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 33, 33, 33, 33, 34, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 36, 36, 36, 36, 37, 37, 38, 39, 39, 39, 40, 41, 41, 41, 41, 41, 42, 42, 43, 43, 44, 45, 45, 46, 47, 47, 48, 48, 49, 49, 50, 54, 54, 54, 55, 55, 56, 56, 57, 57, 57, 57, 57, 58, 58, 58, 59, 60, 66, 67, 68, 70, 72, 73, 73, 84, 84, 86, 92, 98, 99, 105, 114, 118, 120, 121, 125, 156);
私はプログラミングとアルゴリズムを学んでいるので、何かを逃したり、何か意味がない場合は、私に知らせてください。データが大きいためにこれは不可能に見えるかもしれませんが、そうではないことを理解していることに注意してください(私はそれが実行され、そのバリエーションが何年も実行されているのを見てきました)。スケールが実際の問題の邪魔にならないようにしてください。10個の変数を使用し、その10%が私の10個の変数のブルートフォースよりも速い場合、より大きなデータでより速くなると確信しています。私は明かりを消すつもりはありません。少しでも速い結果を提供する小さな改善(またはより大きな設計の改善)を探しています。また、リラックスする必要がある仮定がある場合は、私に知らせてください。