私は同じ問題に遭遇し、それを回避するために小さな共有メモリ ユーティリティ クラスを書きました。
私はmultiprocessing.RawArray
(ロックフリー) を使用しており、アレイへのアクセスはまったく同期されていません (ロックフリー)。自分の足を撃たないように注意してください。
このソリューションを使用すると、クアッドコア i7 で約 3 倍のスピードアップが得られます。
コードは次のとおりです。自由に使用して改善してください。バグがあれば報告してください。
'''
Created on 14.05.2013
@author: martin
'''
import multiprocessing
import ctypes
import numpy as np
class SharedNumpyMemManagerError(Exception):
pass
'''
Singleton Pattern
'''
class SharedNumpyMemManager:
_initSize = 1024
_instance = None
def __new__(cls, *args, **kwargs):
if not cls._instance:
cls._instance = super(SharedNumpyMemManager, cls).__new__(
cls, *args, **kwargs)
return cls._instance
def __init__(self):
self.lock = multiprocessing.Lock()
self.cur = 0
self.cnt = 0
self.shared_arrays = [None] * SharedNumpyMemManager._initSize
def __createArray(self, dimensions, ctype=ctypes.c_double):
self.lock.acquire()
# double size if necessary
if (self.cnt >= len(self.shared_arrays)):
self.shared_arrays = self.shared_arrays + [None] * len(self.shared_arrays)
# next handle
self.__getNextFreeHdl()
# create array in shared memory segment
shared_array_base = multiprocessing.RawArray(ctype, np.prod(dimensions))
# convert to numpy array vie ctypeslib
self.shared_arrays[self.cur] = np.ctypeslib.as_array(shared_array_base)
# do a reshape for correct dimensions
# Returns a masked array containing the same data, but with a new shape.
# The result is a view on the original array
self.shared_arrays[self.cur] = self.shared_arrays[self.cnt].reshape(dimensions)
# update cnt
self.cnt += 1
self.lock.release()
# return handle to the shared memory numpy array
return self.cur
def __getNextFreeHdl(self):
orgCur = self.cur
while self.shared_arrays[self.cur] is not None:
self.cur = (self.cur + 1) % len(self.shared_arrays)
if orgCur == self.cur:
raise SharedNumpyMemManagerError('Max Number of Shared Numpy Arrays Exceeded!')
def __freeArray(self, hdl):
self.lock.acquire()
# set reference to None
if self.shared_arrays[hdl] is not None: # consider multiple calls to free
self.shared_arrays[hdl] = None
self.cnt -= 1
self.lock.release()
def __getArray(self, i):
return self.shared_arrays[i]
@staticmethod
def getInstance():
if not SharedNumpyMemManager._instance:
SharedNumpyMemManager._instance = SharedNumpyMemManager()
return SharedNumpyMemManager._instance
@staticmethod
def createArray(*args, **kwargs):
return SharedNumpyMemManager.getInstance().__createArray(*args, **kwargs)
@staticmethod
def getArray(*args, **kwargs):
return SharedNumpyMemManager.getInstance().__getArray(*args, **kwargs)
@staticmethod
def freeArray(*args, **kwargs):
return SharedNumpyMemManager.getInstance().__freeArray(*args, **kwargs)
# Init Singleton on module load
SharedNumpyMemManager.getInstance()
if __name__ == '__main__':
import timeit
N_PROC = 8
INNER_LOOP = 10000
N = 1000
def propagate(t):
i, shm_hdl, evidence = t
a = SharedNumpyMemManager.getArray(shm_hdl)
for j in range(INNER_LOOP):
a[i] = i
class Parallel_Dummy_PF:
def __init__(self, N):
self.N = N
self.arrayHdl = SharedNumpyMemManager.createArray(self.N, ctype=ctypes.c_double)
self.pool = multiprocessing.Pool(processes=N_PROC)
def update_par(self, evidence):
self.pool.map(propagate, zip(range(self.N), [self.arrayHdl] * self.N, [evidence] * self.N))
def update_seq(self, evidence):
for i in range(self.N):
propagate((i, self.arrayHdl, evidence))
def getArray(self):
return SharedNumpyMemManager.getArray(self.arrayHdl)
def parallelExec():
pf = Parallel_Dummy_PF(N)
print(pf.getArray())
pf.update_par(5)
print(pf.getArray())
def sequentialExec():
pf = Parallel_Dummy_PF(N)
print(pf.getArray())
pf.update_seq(5)
print(pf.getArray())
t1 = timeit.Timer("sequentialExec()", "from __main__ import sequentialExec")
t2 = timeit.Timer("parallelExec()", "from __main__ import parallelExec")
print("Sequential: ", t1.timeit(number=1))
print("Parallel: ", t2.timeit(number=1))