私はあなたと同じようなことをしました:HOGを使用してポジティブおよびネガティブ画像のサンプルを収集して車の特徴を抽出し、線形SVMを使用して特徴セットをトレーニングし(私はSVMライトを使用します)、モデルを使用してHOGマルチ検出機能を使用して車を検出します。
誤検知が多く発生した後、陽性サンプルと誤検知+陰性サンプルを使用してデータを再トレーニングします。次に、結果のモデルが再度テストされます。結果として得られる検出は改善されますが(誤検知が少なくなります)、結果は満足のいくものではありません(平均50%のヒット率と50%の誤検知)。マルチ検出パラメーターを調整すると、結果は向上しますが、それほどではありません(誤検知が10%少なくなり、ヒット率が高くなります)。
編集
必要に応じてソースコードを共有できますが、HOGを使用しても満足のいく結果が得られないため、非常にオープンに話し合います。とにかく、コードはトレーニングと検出にHOGを使用するための良い出発点になると思います
編集:コードを追加する
static void calculateFeaturesFromInput(const string& imageFilename, vector<float>& featureVector, HOGDescriptor& hog)
{
Mat imageData = imread(imageFilename, 1);
if (imageData.empty()) {
featureVector.clear();
printf("Error: HOG image '%s' is empty, features calculation skipped!\n", imageFilename.c_str());
return;
}
// Check for mismatching dimensions
if (imageData.cols != hog.winSize.width || imageData.rows != hog.winSize.height) {
featureVector.clear();
printf("Error: Image '%s' dimensions (%u x %u) do not match HOG window size (%u x %u)!\n", imageFilename.c_str(), imageData.cols, imageData.rows, hog.winSize.width, hog.winSize.height);
return;
}
vector<Point> locations;
hog.compute(imageData, featureVector, winStride, trainingPadding, locations);
imageData.release(); // Release the image again after features are extracted
}
..。
int main(int argc, char** argv) {
// <editor-fold defaultstate="collapsed" desc="Init">
HOGDescriptor hog; // Use standard parameters here
hog.winSize.height = 128;
hog.winSize.width = 64;
// Get the files to train from somewhere
static vector<string> tesImages;
static vector<string> positiveTrainingImages;
static vector<string> negativeTrainingImages;
static vector<string> validExtensions;
validExtensions.push_back("jpg");
validExtensions.push_back("png");
validExtensions.push_back("ppm");
validExtensions.push_back("pgm");
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="Read image files">
getFilesInDirectory(posSamplesDir, positiveTrainingImages, validExtensions);
getFilesInDirectory(negSamplesDir, negativeTrainingImages, validExtensions);
/// Retrieve the descriptor vectors from the samples
unsigned long overallSamples = positiveTrainingImages.size() + negativeTrainingImages.size();
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="Calculate HOG features and save to file">
// Make sure there are actually samples to train
if (overallSamples == 0) {
printf("No training sample files found, nothing to do!\n");
return EXIT_SUCCESS;
}
/// @WARNING: This is really important, some libraries (e.g. ROS) seems to set the system locale which takes decimal commata instead of points which causes the file input parsing to fail
setlocale(LC_ALL, "C"); // Do not use the system locale
setlocale(LC_NUMERIC,"C");
setlocale(LC_ALL, "POSIX");
printf("Reading files, generating HOG features and save them to file '%s':\n", featuresFile.c_str());
float percent;
/**
* Save the calculated descriptor vectors to a file in a format that can be used by SVMlight for training
* @NOTE: If you split these steps into separate steps:
* 1. calculating features into memory (e.g. into a cv::Mat or vector< vector<float> >),
* 2. saving features to file / directly inject from memory to machine learning algorithm,
* the program may consume a considerable amount of main memory
*/
fstream File;
File.open(featuresFile.c_str(), ios::out);
if (File.good() && File.is_open()) {
File << "# Use this file to train, e.g. SVMlight by issuing $ svm_learn -i 1 -a weights.txt " << featuresFile.c_str() << endl; // Remove this line for libsvm which does not support comments
// Iterate over sample images
for (unsigned long currentFile = 0; currentFile < overallSamples; ++currentFile) {
storeCursor();
vector<float> featureVector;
// Get positive or negative sample image file path
const string currentImageFile = (currentFile < positiveTrainingImages.size() ? positiveTrainingImages.at(currentFile) : negativeTrainingImages.at(currentFile - positiveTrainingImages.size()));
// Output progress
if ( (currentFile+1) % 10 == 0 || (currentFile+1) == overallSamples ) {
percent = ((currentFile+1) * 100 / overallSamples);
printf("%5lu (%3.0f%%):\tFile '%s'", (currentFile+1), percent, currentImageFile.c_str());
fflush(stdout);
resetCursor();
}
// Calculate feature vector from current image file
calculateFeaturesFromInput(currentImageFile, featureVector, hog);
if (!featureVector.empty()) {
/* Put positive or negative sample class to file,
* true=positive, false=negative,
* and convert positive class to +1 and negative class to -1 for SVMlight
*/
File << ((currentFile < positiveTrainingImages.size()) ? "+1" : "-1");
// Save feature vector components
for (unsigned int feature = 0; feature < featureVector.size(); ++feature) {
File << " " << (feature + 1) << ":" << featureVector.at(feature);
}
File << endl;
}
}
printf("\n");
File.flush();
File.close();
} else {
printf("Error opening file '%s'!\n", featuresFile.c_str());
return EXIT_FAILURE;
}
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="Pass features to machine learning algorithm">
/// Read in and train the calculated feature vectors
printf("Calling SVMlight\n");
SVMlight::getInstance()->read_problem(const_cast<char*> (featuresFile.c_str()));
SVMlight::getInstance()->train(); // Call the core libsvm training procedure
printf("Training done, saving model file!\n");
SVMlight::getInstance()->saveModelToFile(svmModelFile);
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="Generate single detecting feature vector from calculated SVM support vectors and SVM model">
printf("Generating representative single HOG feature vector using svmlight!\n");
vector<float> descriptorVector;
vector<unsigned int> descriptorVectorIndices;
// Generate a single detecting feature vector (v1 | b) from the trained support vectors, for use e.g. with the HOG algorithm
SVMlight::getInstance()->getSingleDetectingVector(descriptorVector, descriptorVectorIndices);
// And save the precious to file system
saveDescriptorVectorToFile(descriptorVector, descriptorVectorIndices, descriptorVectorFile);
// </editor-fold>
// <editor-fold defaultstate="collapsed" desc="Test detecting vector">
cout << "Test Detecting Vector" << endl;
hog.setSVMDetector(descriptorVector); // Set our custom detecting vector
cout << "descriptorVector size: " << sizeof(descriptorVector) << endl;
getFilesInDirectory(tesSamplesDir, tesImages, validExtensions);
namedWindow("Test Detector", 1);
for( size_t it = 0; it < tesImages.size(); it++ )
{
cout << "Process image " << tesImages[it] << endl;
Mat image = imread( tesImages[it], 1 );
detectAndDrawObjects(image, hog);
for(;;)
{
int c = waitKey();
if( (char)c == 'n')
break;
else if( (char)c == '\x1b' )
exit(0);
}
}
// </editor-fold>
return EXIT_SUCCESS;
}