private static String[] testFiles = new String[] {"img01.JPG","img02.JPG","img03.JPG","img04.JPG","img06.JPG","img07.JPG","img05.JPG"};
// private static String testFilespath = "/home/student/Desktop/images";
private static String testFilespath ="hdfs://localhost:54310/user/root/images";
//private static String indexpath = "/home/student/Desktop/indexDemo";
private static String testExtensive="/home/student/Desktop/images";
public static class MapClass extends MapReduceBase
implements Mapper<Text, Text, Text, Text> {
private Text input_image = new Text();
private Text input_vector = new Text();
@Override
public void map(Text key, Text value,OutputCollector<Text, Text> output,Reporter reporter) throws IOException {
System.out.println("CorrelogramIndex Method:");
String featureString;
int MAXIMUM_DISTANCE = 16;
AutoColorCorrelogram.Mode mode = AutoColorCorrelogram.Mode.FullNeighbourhood;
for (String identifier : testFiles) {
try (FileInputStream fis = new FileInputStream(testFilespath + "/" + identifier)) {
//Document doc = builder.createDocument(fis, identifier);
//FileInputStream imageStream = new FileInputStream(testFilespath + "/" + identifier);
BufferedImage bimg = ImageIO.read(fis);
AutoColorCorrelogram vd = new AutoColorCorrelogram(MAXIMUM_DISTANCE, mode);
vd.extract(bimg);
featureString = vd.getStringRepresentation();
double[] bytearray=vd.getDoubleHistogram();
System.out.println("image: "+ identifier + " " + featureString );
}
System.out.println(" ------------- ");
input_image.set(identifier);
input_vector.set(featureString);
output.collect(input_image, input_vector);
}
}
}
public static class Reduce extends MapReduceBase
implements Reducer<Text, Text, Text, Text> {
@Override
public void reduce(Text key, Iterator<Text> values,
OutputCollector<Text, Text> output,
Reporter reporter) throws IOException {
String out_vector="";
while (values.hasNext()) {
out_vector.concat(values.next().toString());
}
output.collect(key, new Text(out_vector));
}
}
static int printUsage() {
System.out.println("image_mapreduce [-m <maps>] [-r <reduces>] <input> <output>");
ToolRunner.printGenericCommandUsage(System.out);
return -1;
}
@Override
public int run(String[] args) throws Exception {
JobConf conf = new JobConf(getConf(), image_mapreduce.class);
conf.setJobName("image_mapreduce");
// the keys are words (strings)
conf.setOutputKeyClass(Text.class);
// the values are counts (ints)
conf.setOutputValueClass(Text.class);
conf.setMapperClass(MapClass.class);
// conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
List<String> other_args = new ArrayList<String>();
for(int i=0; i < args.length; ++i) {
try {
if ("-m".equals(args[i])) {
conf.setNumMapTasks(Integer.parseInt(args[++i]));
} else if ("-r".equals(args[i])) {
conf.setNumReduceTasks(Integer.parseInt(args[++i]));
} else {
other_args.add(args[i]);
}
} catch (NumberFormatException except) {
System.out.println("ERROR: Integer expected instead of " + args[i]);
return printUsage();
} catch (ArrayIndexOutOfBoundsException except) {
System.out.println("ERROR: Required parameter missing from " +
args[i-1]);
return printUsage();
}
}
FileInputFormat.setInputPaths(conf, other_args.get(0));
//FileInputFormat.setInputPaths(conf,new Path("hdfs://localhost:54310/user/root/images"));
FileOutputFormat.setOutputPath(conf, new Path(other_args.get(1)));
JobClient.runJob(conf);
return 0;
}
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new image_mapreduce(), args);
System.exit(res);
}
}
`私は複数の画像ファイルを入力として取り、hdfsに保存し、map関数で特徴を抽出するプログラムを書いています. FileInputStream(いくつかのパラメーター)で画像を読み取るためのパスを指定するにはどうすればよいですか? または、複数の画像ファイルを読み取る方法はありますか?
私がやりたいことは次のとおりです。 -- hdfs の複数の画像ファイルを入力として取ります -- map 関数で特徴を抽出します。-- 繰り返し削減します。コードまたはそれを行うためのより良い方法で私を助けてください。