.......E <-end
........
........
........
........
........
........
S....... <-start
残念ながら、パスが最短パスではない可能性があるため、「標準的なパス検索アルゴリズム」は使用できません。すべてのパスを考慮した単純な検索を具体的に使用する必要があります(たとえば、深さ優先または幅優先)。
ただし、どのようにしてタイルに到達したかは気にしないため、動的計画法と呼ばれる手法を使用できます。すべての場所 (i,j) について、n回の移動でそこに到達する方法の数 (方法i,j (n)と呼びましょう) は次のとおりです。
ウェイi,j (n) = ウェイi-1,j (n-1) + ウェイi+1,j (n-1) + ウェイi,j-1 (n-1) + ウェイi,j+1 (n-1) + ウェイi+1,j+1 (n-1) + ウェイi-1,j+1 (n-1) + ウェイi+1,j-1 (n-1) + ウェイi -1,j-1 (n-1)
つまり、キングは 1 回の移動で隣接するどのマスからでも移動できます。
ウェイi,j (n) = 合計ネイバー (i, j) (ウェイネイバー(n-1))
したがって、たとえば python では次のようにします。
SIZE = 8
cache = {}
def ways(pos, n):
r,c = pos # row,column
if not (0<=r<SIZE and 0<=c<SIZE):
# off edge of board: no ways to get here
return 0
elif n==0:
# starting position: only one way to get here
return 1 if (r,c)==(0,0) else 0
else:
args = (pos,n)
if not args in cache:
cache[args] = ways((r-1,c), n-1) + ways((r+1,c), n-1) + ways((r,c-1), n-1) + ways((r,c+1), n-1) + ways((r-1,c-1), n-1) + ways((r+1,c-1), n-1) + ways((r+1,c-1), n-1) + ways((r+1,c+1), n-1)
return cache[args]
デモ:
>>> ways((7,7), 15)
1074445298
上記の手法はメモ化と呼ばれ、物事を行う順序について実際に考える必要がないため、動的プログラミングよりも簡単に記述できます。一連の大規模なクエリを実行すると、キャッシュが大きくなることがわかります。
>>> cache
{}
>>> ways((1,0), 1)
1
>>> cache
{((1, 0), 1): 1}
>>> ways((1,1), 2)
2
>>> cache
{((0, 1), 1): 1, ((1, 2), 1): 0, ((1, 0), 1): 1, ((0, 0), 1): 0, ((2, 0), 1): 0, ((2, 1), 1): 0, ((1, 1), 2): 2, ((2, 2), 1): 0}
>>> ways((2,1), 3)
5
>>> cache
{((1, 2), 1): 0, ((2, 3), 1): 0, ((2, 0), 2): 1, ((1, 1), 1): 1, ((3, 1), 1): 0, ((4, 0), 1): 0, ((1, 0), 1): 1, ((3, 0), 1): 0, ((0, 0), 1): 0, ((2, 0), 1): 0, ((2, 1), 1): 0, ((4, 1), 1): 0, ((2, 2), 2): 1, ((3, 3), 1): 0, ((0, 1), 1): 1, ((3, 0), 2): 0, ((3, 2), 2): 0, ((3, 2), 1): 0, ((1, 0), 2): 1, ((4, 2), 1): 0, ((4, 3), 1): 0, ((3, 1), 2): 0, ((1, 1), 2): 2, ((2, 2), 1): 0, ((2, 1), 3): 5}
(Python では、@cached
または@memoized
デコレータを使用して、最後のelse:
ブロックにコード全体を記述する必要がないようにすることもできます。他の言語には、メモ化を自動的に実行する別の方法があります。)
上記はトップダウンのアプローチでした。非常に大きなスタックが生成される場合があります (スタックは で大きくなりますn
)。不必要な作業を避けるために非常に効率的になりたい場合は、ボトムアップのアプローチを行うことができます。このアプローチでは、1 歩、2 歩、3 歩、... について、キングがいる可能性のあるすべての位置をシミュレートします。
SIZE = 8
def ways(n):
grid = [[0 for row in range(8)] for col in range(8)]
grid[0][0] = 1
def inGrid(r,c):
return all(0<=coord<SIZE for coord in (r,c))
def adjacentSum(pos, grid):
r,c = pos
total = 0
for neighbor in [(1,0),(1,1),(0,1),(-1,1),(-1,0),(-1,-1),(0,-1),(1,-1)]:
delta_r,delta_c = neighbor
(r2,c2) = (r+delta_r,c+delta_c)
if inGrid(r2,c2):
total += grid[r2][c2]
return total
for _ in range(n):
grid = [[adjacentSum((r,c), grid) for r in range(8)] for c in range(8)]
# careful: grid must be replaced atomically, not element-by-element
from pprint import pprint
pprint(grid)
return grid
デモ:
>>> ways(0)
[[1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
>>> ways(1)
[[0, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
>>> ways(2)
[[3, 2, 2, 0, 0, 0, 0, 0],
[2, 2, 2, 0, 0, 0, 0, 0],
[2, 2, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
>>> ways(3)
[[6, 11, 6, 4, 0, 0, 0, 0],
[11, 16, 9, 5, 0, 0, 0, 0],
[6, 9, 6, 3, 0, 0, 0, 0],
[4, 5, 3, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
>>> ways(4)
[[38, 48, 45, 20, 9, 0, 0, 0],
[48, 64, 60, 28, 12, 0, 0, 0],
[45, 60, 51, 24, 9, 0, 0, 0],
[20, 28, 24, 12, 4, 0, 0, 0],
[9, 12, 9, 4, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]