これは、スタックを使用した事前注文の反復トラバーサルのみに基づく Python ソリューションです。パスとパスサムの両方を出力します。
class Stack(object): # just for reference
def __init__(self):
self.a = []
def push(self, b):
self.a.append(b)
def peek(self):
return self.a[-1]
def pop(self):
return self.a.pop()
def isEmpty(self):
return len(self.a) == 0
def show(self):
return self.a
def paths(troot): # you should create your own Tree and supply the root
current = troot
s = Stack()
s.push(current)
s.push(str(current.key))
s.push(current.key)
while not s.isEmpty():
pathsum = s.pop()
path = s.pop()
current = s.pop()
if not current.left and not current.right:
print 'path: %s, pathsum: %d' % (path, pathsum)
if current.right:
rightstr = path + "->" + str(current.right.key)
rightpathsum = pathsum * 10 + current.right.key
s.push(current.right)
s.push(rightstr)
s.push(rightpathsum)
if current.left:
leftstr = path + "->" + str(current.left.key)
leftpathsum = pathsum * 10 + current.left.key
s.push(current.left)
s.push(leftstr)
s.push(leftpathsum)
たとえば、次のツリーの場合:
3
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
1 7
/ \ / \
/ \ / \
/ \ / \
/ \ / \
0 2 5 8
/ \ / \ / \ / \
/ \ / \ / \ / \
NUL NUL NUL NUL 4 6 NUL 9
出力は次のようになります。
>>> paths()
path: 3->1->0, pathsum: 310
path: 3->1->2, pathsum: 312
path: 3->7->5->4, pathsum: 3754
path: 3->7->5->6, pathsum: 3756
path: 3->7->8->9, pathsum: 3789