課題については、逆関数を返す関数を作成するように依頼されました。基本的な問題は、平方関数から平方根関数を作成することでした。二分探索を使った解決策とニュートン法を使った別の解決策を思いついた。私のソリューションは、立方根と平方根では正常に機能するようですが、log10では機能しません。これが私の解決策です:
#Binary Search
def inverse1(f, delta=1e-8):
"""Given a function y = f(x) that is a monotonically increasing function on
non-negative numbers, return the function x = f_1(y) that is an approximate
inverse, picking the closest value to the inverse, within delta."""
def f_1(y):
low, high = 0, float(y)
last, mid = 0, high/2
while abs(mid-last) > delta:
if f(mid) < y:
low = mid
else:
high = mid
last, mid = mid, (low + high)/2
return mid
return f_1
#Newton's Method
def inverse(f, delta=1e-5):
"""Given a function y = f(x) that is a monotonically increasing function on
non-negative numbers, return the function x = f_1(y) that is an approximate
inverse, picking the closest value to the inverse, within delta."""
def derivative(func): return lambda y: (func(y+delta) - func(y)) / delta
def root(y): return lambda x: f(x) - y
def newton(y, iters=15):
guess = float(y)/2
rootfunc = root(y)
derifunc = derivative(rootfunc)
for _ in range(iters):
guess = guess - (rootfunc(guess)/derifunc(guess))
return guess
return newton
使用するメソッドに関係なく、教授のテスト関数でlog10()の入力n = 10000に到達すると、次のエラーが発生します:(例外:ニュートンのメソッド関数を使用すると、log10()はかなりオフになりますが、これは二分探索法は、入力しきい値に達するまでは比較的正確です。どちらの場合も、n = 10000の場合、どちらのソリューションもこのエラーをスローします)
2: sqrt = 1.4142136 ( 1.4142136 actual); 0.0000 diff; ok
2: log = 0.3010300 ( 0.3010300 actual); 0.0000 diff; ok
2: cbrt = 1.2599211 ( 1.2599210 actual); 0.0000 diff; ok
4: sqrt = 2.0000000 ( 2.0000000 actual); 0.0000 diff; ok
4: log = 0.6020600 ( 0.6020600 actual); 0.0000 diff; ok
4: cbrt = 1.5874011 ( 1.5874011 actual); 0.0000 diff; ok
6: sqrt = 2.4494897 ( 2.4494897 actual); 0.0000 diff; ok
6: log = 0.7781513 ( 0.7781513 actual); 0.0000 diff; ok
6: cbrt = 1.8171206 ( 1.8171206 actual); 0.0000 diff; ok
8: sqrt = 2.8284271 ( 2.8284271 actual); 0.0000 diff; ok
8: log = 0.9030900 ( 0.9030900 actual); 0.0000 diff; ok
8: cbrt = 2.0000000 ( 2.0000000 actual); 0.0000 diff; ok
10: sqrt = 3.1622777 ( 3.1622777 actual); 0.0000 diff; ok
10: log = 1.0000000 ( 1.0000000 actual); 0.0000 diff; ok
10: cbrt = 2.1544347 ( 2.1544347 actual); 0.0000 diff; ok
99: sqrt = 9.9498744 ( 9.9498744 actual); 0.0000 diff; ok
99: log = 1.9956352 ( 1.9956352 actual); 0.0000 diff; ok
99: cbrt = 4.6260650 ( 4.6260650 actual); 0.0000 diff; ok
100: sqrt = 10.0000000 ( 10.0000000 actual); 0.0000 diff; ok
100: log = 2.0000000 ( 2.0000000 actual); 0.0000 diff; ok
100: cbrt = 4.6415888 ( 4.6415888 actual); 0.0000 diff; ok
101: sqrt = 10.0498756 ( 10.0498756 actual); 0.0000 diff; ok
101: log = 2.0043214 ( 2.0043214 actual); 0.0000 diff; ok
101: cbrt = 4.6570095 ( 4.6570095 actual); 0.0000 diff; ok
1000: sqrt = 31.6227766 ( 31.6227766 actual); 0.0000 diff; ok
Traceback (most recent call last):
File "/CS212/Unit3HW.py", line 296, in <module>
print test()
File "/CS212/Unit3HW.py", line 286, in test
test1(n, 'log', log10(n), math.log10(n))
File "/CS212/Unit3HW.py", line 237, in f_1
if f(mid) < y:
File "/CS212/Unit3HW.py", line 270, in power10
def power10(x): return 10**x
OverflowError: (34, 'Result too large')
テスト機能は次のとおりです。
def test():
import math
nums = [2,4,6,8,10,99,100,101,1000,10000, 20000, 40000, 100000000]
for n in nums:
test1(n, 'sqrt', sqrt(n), math.sqrt(n))
test1(n, 'log', log10(n), math.log10(n))
test1(n, 'cbrt', cbrt(n), n**(1./3.))
def test1(n, name, value, expected):
diff = abs(value - expected)
print '%6g: %s = %13.7f (%13.7f actual); %.4f diff; %s' %(
n, name, value, expected, diff,
('ok' if diff < .002 else '**** BAD ****'))
テストの設定方法は次のとおりです。
#Using inverse() or inverse1() depending on desired method
def power10(x): return 10**x
def square(x): return x*x
log10 = inverse(power10)
def cube(x): return x*x*x
sqrt = inverse(square)
cbrt = inverse(cube)
print test()
投稿された他のソリューションは、テスト入力のフルセットを実行するのに問題がないようです(投稿されたソリューションを見ないようにしました)。このエラーについて何か洞察はありますか?
コンセンサスは数字の大きさのようですが、私の教授のコードはすべての場合に問題なく機能しているようです。
#Prof's code:
def inverse2(f, delta=1/1024.):
def f_1(y):
lo, hi = find_bounds(f, y)
return binary_search(f, y, lo, hi, delta)
return f_1
def find_bounds(f, y):
x = 1
while f(x) < y:
x = x * 2
lo = 0 if (x ==1) else x/2
return lo, x
def binary_search(f, y, lo, hi, delta):
while lo <= hi:
x = (lo + hi) / 2
if f(x) < y:
lo = x + delta
elif f(x) > y:
hi = x - delta
else:
return x;
return hi if (f(hi) - y < y - f(lo)) else lo
log10 = inverse2(power10)
sqrt = inverse2(square)
cbrt = inverse2(cube)
print test()
結果:
2: sqrt = 1.4134903 ( 1.4142136 actual); 0.0007 diff; ok
2: log = 0.3000984 ( 0.3010300 actual); 0.0009 diff; ok
2: cbrt = 1.2590427 ( 1.2599210 actual); 0.0009 diff; ok
4: sqrt = 2.0009756 ( 2.0000000 actual); 0.0010 diff; ok
4: log = 0.6011734 ( 0.6020600 actual); 0.0009 diff; ok
4: cbrt = 1.5865107 ( 1.5874011 actual); 0.0009 diff; ok
6: sqrt = 2.4486818 ( 2.4494897 actual); 0.0008 diff; ok
6: log = 0.7790794 ( 0.7781513 actual); 0.0009 diff; ok
6: cbrt = 1.8162270 ( 1.8171206 actual); 0.0009 diff; ok
8: sqrt = 2.8289337 ( 2.8284271 actual); 0.0005 diff; ok
8: log = 0.9022484 ( 0.9030900 actual); 0.0008 diff; ok
8: cbrt = 2.0009756 ( 2.0000000 actual); 0.0010 diff; ok
10: sqrt = 3.1632442 ( 3.1622777 actual); 0.0010 diff; ok
10: log = 1.0009756 ( 1.0000000 actual); 0.0010 diff; ok
10: cbrt = 2.1534719 ( 2.1544347 actual); 0.0010 diff; ok
99: sqrt = 9.9506714 ( 9.9498744 actual); 0.0008 diff; ok
99: log = 1.9951124 ( 1.9956352 actual); 0.0005 diff; ok
99: cbrt = 4.6253061 ( 4.6260650 actual); 0.0008 diff; ok
100: sqrt = 10.0004883 ( 10.0000000 actual); 0.0005 diff; ok
100: log = 2.0009756 ( 2.0000000 actual); 0.0010 diff; ok
100: cbrt = 4.6409388 ( 4.6415888 actual); 0.0007 diff; ok
101: sqrt = 10.0493288 ( 10.0498756 actual); 0.0005 diff; ok
101: log = 2.0048876 ( 2.0043214 actual); 0.0006 diff; ok
101: cbrt = 4.6575475 ( 4.6570095 actual); 0.0005 diff; ok
1000: sqrt = 31.6220242 ( 31.6227766 actual); 0.0008 diff; ok
1000: log = 3.0000000 ( 3.0000000 actual); 0.0000 diff; ok
1000: cbrt = 10.0004883 ( 10.0000000 actual); 0.0005 diff; ok
10000: sqrt = 99.9991455 ( 100.0000000 actual); 0.0009 diff; ok
10000: log = 4.0009756 ( 4.0000000 actual); 0.0010 diff; ok
10000: cbrt = 21.5436456 ( 21.5443469 actual); 0.0007 diff; ok
20000: sqrt = 141.4220798 ( 141.4213562 actual); 0.0007 diff; ok
20000: log = 4.3019052 ( 4.3010300 actual); 0.0009 diff; ok
20000: cbrt = 27.1449150 ( 27.1441762 actual); 0.0007 diff; ok
40000: sqrt = 199.9991455 ( 200.0000000 actual); 0.0009 diff; ok
40000: log = 4.6028333 ( 4.6020600 actual); 0.0008 diff; ok
40000: cbrt = 34.2003296 ( 34.1995189 actual); 0.0008 diff; ok
1e+08: sqrt = 9999.9994545 (10000.0000000 actual); 0.0005 diff; ok
1e+08: log = 8.0009761 ( 8.0000000 actual); 0.0010 diff; ok
1e+08: cbrt = 464.1597912 ( 464.1588834 actual); 0.0009 diff; ok
None