画像処理技術を使用してさまざまなオブジェクトとその長さを識別するプロジェクトを行っています。JavaCV と OpenCV の多くの例を見ていきます。残念ながら、ポリゴンの T 字型は特定できませんでした。
次の長方形識別方法を使用しようとしましたが、失敗しました。
public static CvSeq findSquares( final IplImage src, CvMemStorage storage)
{
CvSeq squares = new CvContour();
squares = cvCreateSeq(0, sizeof(CvContour.class), sizeof(CvSeq.class), storage);
IplImage pyr = null, timg = null, gray = null, tgray;
timg = cvCloneImage(src);
CvSize sz = cvSize(src.width() & -2, src.height() & -2);
tgray = cvCreateImage(sz, src.depth(), 1);
gray = cvCreateImage(sz, src.depth(), 1);
pyr = cvCreateImage(cvSize(sz.width()/2, sz.height()/2), src.depth(), src.nChannels());
// down-scale and upscale the image to filter out the noise
cvPyrDown(timg, pyr, CV_GAUSSIAN_5x5);
cvPyrUp(pyr, timg, CV_GAUSSIAN_5x5);
cvSaveImage("ha.jpg", timg);
CvSeq contours = new CvContour();
// request closing of the application when the image window is closed
// show image on window
// find squares in every color plane of the image
for( int c = 0; c < 3; c++ )
{
IplImage channels[] = {cvCreateImage(sz, 8, 1), cvCreateImage(sz, 8, 1), cvCreateImage(sz, 8, 1)};
channels[c] = cvCreateImage(sz, 8, 1);
if(src.nChannels() > 1){
cvSplit(timg, channels[0], channels[1], channels[2], null);
}else{
tgray = cvCloneImage(timg);
}
tgray = channels[c];
// try several threshold levels
for( int l = 0; l < N; l++ )
{
// hack: use Canny instead of zero threshold level.
// Canny helps to catch squares with gradient shading
if( l == 0 )
{
// apply Canny. Take the upper threshold from slider
// and set the lower to 0 (which forces edges merging)
cvCanny(tgray, gray, 0, thresh, 5);
// dilate canny output to remove potential
// // holes between edge segments
cvDilate(gray, gray, null, 1);
}
else
{
// apply threshold if l!=0:
cvThreshold(tgray, gray, (l+1)*255/N, 255, CV_THRESH_BINARY);
}
// find contours and store them all as a list
cvFindContours(gray, storage, contours, sizeof(CvContour.class), CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
CvSeq approx;
// test each contour
while (contours != null && !contours.isNull()) {
if (contours.elem_size() > 0) {
approx = cvApproxPoly(contours, Loader.sizeof(CvContour.class),storage, CV_POLY_APPROX_DP, cvContourPerimeter(contours)*0.02, 0);
if( approx.total() == 4
&&
Math.abs(cvContourArea(approx, CV_WHOLE_SEQ, 0)) > 1000 &&
cvCheckContourConvexity(approx) != 0
){
double maxCosine = 0;
//
for( int j = 2; j < 5; j++ )
{
// find the maximum cosine of the angle between joint edges
double cosine = Math.abs(angle(new CvPoint(cvGetSeqElem(approx, j%4)), new CvPoint(cvGetSeqElem(approx, j-2)), new CvPoint(cvGetSeqElem(approx, j-1))));
maxCosine = Math.max(maxCosine, cosine);
}
if( maxCosine < 0.2 ){
CvRect x=cvBoundingRect(approx, l);
if((x.width()*x.height())<5000 ){
System.out.println("Width : "+x.width()+" Height : "+x.height());
cvSeqPush(squares, approx);
//System.out.println(x);
}
}
}
}
contours = contours.h_next();
}
contours = new CvContour();
}
}
return squares;
}
このメソッドを変更して、画像から T 形状を識別するのを手伝ってください。入力画像はこんな感じ。
これは私が識別しなければならないT字型です