スペクトル分析で時系列を分析しようとしています。1 週間 (24 * 7 = 168 測定) 記録された 1 時間ごとの測定値で構成されるデータの周期性を検出しようとしています。温度変化の日周成分を示すことを目指しています。これまでのところ、(たとえば):
clear all
StartDate = '2011-07-01 00:00';
EndDate = '2011-07-07 23:00';
DateTime=datestr(datenum(StartDate,'yyyy-mm-dd HH:MM'):60/(60*24):...
datenum(EndDate,'yyyy-mm-dd HH:MM'),...
'yyyy-mm-dd HH:MM');
DateTime=cellstr(DateTime);
DecDay = datenum(DateTime)-datenum(2011,0,0);
t = 0:25/length(DecDay):(25-0.1488);
x = sin(2*pi*50*t) + sin(2*pi*120*t);
y = x + 2*randn(size(t));
Y = fft(y,length(y));
ここからどこへ行く?アドバイスをいただければ幸いです。
変更されました:
clear all
StartDate = '2011-07-01 00:00';
EndDate = '2011-07-07 23:00';
DateTime=datestr(datenum(StartDate,'yyyy-mm-dd HH:MM'):60/(60*24):...
datenum(EndDate,'yyyy-mm-dd HH:MM'),...
'yyyy-mm-dd HH:MM');
DateTime=cellstr(DateTime);
DecDay = datenum(DateTime)-datenum(2011,0,0);
x = cos((2*pi)/12*DecDay)+randn(size(DecDay));
% if you have the signal processing toolbox
[Pxx,F] = periodogram(x,rectwin(length(x)),length(x),1);
plot(F,10*log10(Pxx)); xlabel('Cycles/hour');
ylabel('dB/(Cycles/hour');
1時間あたりのサイクルではなく、x軸を時間に変換する方法を誰かが提案できますか? 私が試してみました
plot(1./F,10*log10(Pxx)); xlabel('hours');
しかし、これはペリドグラムを台無しにします。