再現可能な例をありがとう。これはかなり基本的な R のものです。ベクトルの選択した要素に割り当てることができます (配列には次元があり、指定したのは配列ではなくベクトルであることに注意してください)。
> pred_precipitation[pred_precipitation<0] <- 0
> pred_precipitation
[1] 1.2091281 0.0000000 7.7665555 0.0000000 0.0000000 0.0000000 0.5151504 0.0000000 1.8281251
[10] 0.5098688 2.8370263 0.4895606 1.5152191 4.1740177 7.1527742 2.8992215 4.5322934 6.7180530
[19] 0.0000000 1.1914052 3.6152333 0.0000000 0.3778717 0.0000000 1.4940469
ベンチマーク戦!
@James はさらに高速な方法を見つけ、コメントに残しました。彼の勝利が短命であることを知っているという理由だけで、私は彼に賛成票を投じました。
まず、コンパイルを試みますが、それは誰にも役立たないようです:
p <- rnorm(10000)
gsk3 <- function(x) { x[x<0] <- 0; x }
jmsigner <- function(x) ifelse(x<0, 0, x)
joshua <- function(x) pmin(x,0)
james <- function(x) (abs(x)+x)/2
library(compiler)
gsk3.c <- cmpfun(gsk3)
jmsigner.c <- cmpfun(jmsigner)
joshua.c <- cmpfun(joshua)
james.c <- cmpfun(james)
microbenchmark(joshua(p),joshua.c(p),gsk3(p),gsk3.c(p),jmsigner(p),james(p),jmsigner.c(p),james.c(p))
expr min lq median uq max
1 gsk3.c(p) 251.782 255.0515 266.8685 269.5205 457.998
2 gsk3(p) 256.262 261.6105 270.7340 281.3560 2940.486
3 james.c(p) 38.418 41.3770 43.3020 45.6160 132.342
4 james(p) 38.934 42.1965 43.5700 47.2085 4524.303
5 jmsigner.c(p) 2047.739 2145.9915 2198.6170 2291.8475 4879.418
6 jmsigner(p) 2047.502 2169.9555 2258.6225 2405.0730 5064.334
7 joshua.c(p) 237.008 244.3570 251.7375 265.2545 376.684
8 joshua(p) 237.545 244.8635 255.1690 271.9910 430.566
ちょっと待って!Dirk がこの Rcpp のことを書きました。完全に C++ の無能な人が、JSS の論文を読み、その例を適応させて、それらすべての中で最速の関数を書くことができるでしょうか? 親愛なるリスナーの皆さん、お楽しみに。
library(inline)
cpp_if_src <- '
Rcpp::NumericVector xa(a);
int n_xa = xa.size();
for(int i=0; i < n_xa; i++) {
if(xa[i]<0) xa[i] = 0;
}
return xa;
'
cpp_if <- cxxfunction(signature(a="numeric"), cpp_if_src, plugin="Rcpp")
microbenchmark(joshua(p),joshua.c(p),gsk3(p),gsk3.c(p),jmsigner(p),james(p),jmsigner.c(p),james.c(p), cpp_if(p))
expr min lq median uq max
1 cpp_if(p) 8.233 10.4865 11.6000 12.4090 69.512
2 gsk3(p) 170.572 172.7975 175.0515 182.4035 2515.870
3 james(p) 37.074 39.6955 40.5720 42.1965 2396.758
4 jmsigner(p) 1110.313 1118.9445 1133.4725 1164.2305 65942.680
5 joshua(p) 237.135 240.1655 243.3990 250.3660 2597.429
その通りです、船長。
p
これにより、割り当てなくても入力が変更されます。その動作を回避したい場合は、複製する必要があります。
cpp_ifclone_src <- '
Rcpp::NumericVector xa(Rcpp::clone(a));
int n_xa = xa.size();
for(int i=0; i < n_xa; i++) {
if(xa[i]<0) xa[i] = 0;
}
return xa;
'
cpp_ifclone <- cxxfunction(signature(a="numeric"), cpp_ifclone_src, plugin="Rcpp")
残念ながら、これは速度の利点を殺します。