相互情報量利得を分割関数として使用して、バイナリ分類ツリーを構築しています。ただし、トレーニング データは少数のクラスに偏っているため、各トレーニング例を逆クラス頻度で重み付けすることをお勧めします。
トレーニング データに重みを付けるにはどうすればよいですか? エントロピーを推定する確率を計算する場合、加重平均を使用しますか?
編集:重みを使用したエントロピーの式が欲しいです。
相互情報量利得を分割関数として使用して、バイナリ分類ツリーを構築しています。ただし、トレーニング データは少数のクラスに偏っているため、各トレーニング例を逆クラス頻度で重み付けすることをお勧めします。
トレーニング データに重みを付けるにはどうすればよいですか? エントロピーを推定する確率を計算する場合、加重平均を使用しますか?
編集:重みを使用したエントロピーの式が欲しいです。
投資リスクの尺度としての州価値加重エントロピー。
http://www56.homepage.villanova.edu/david.nawrocki/State%20Weighted%20Entropy%20Nawrocki%20Harding.pdf