簡単な答え: できません。なぜこれが「問題を引き起こす」可能性があるのか は明らかではありません。「日付」の名前は、どの列とも異なるデータフレームのインデックスに名前を付けています。フレームの列と混同しないように、特にこのオフセットで印刷されます。DataFrame['Date']
以下のように日付にスライスすることはありません。
>>> import numpy as np; import pandas; import datetime
>>> dfrm = pandas.DataFrame(np.random.rand(10,3),
... columns=['A','B','C'],
... index = pandas.Index(
... [datetime.date(2012,6,elem) for elem in range(1,11)],
... name="Date"))
>>> dfrm
A B C
Date
2012-06-01 0.283724 0.863012 0.798891
2012-06-02 0.097231 0.277564 0.872306
2012-06-03 0.821461 0.499485 0.126441
2012-06-04 0.887782 0.389486 0.374118
2012-06-05 0.248065 0.032287 0.850939
2012-06-06 0.101917 0.121171 0.577643
2012-06-07 0.225278 0.161301 0.708996
2012-06-08 0.906042 0.828814 0.247564
2012-06-09 0.733363 0.924076 0.393353
2012-06-10 0.273837 0.318013 0.754807
>>> dfrm['Date']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python2.7/dist-packages/pandas/core/frame.py", line 1458, in __getitem__
return self._get_item_cache(key)
File "/usr/local/lib/python2.7/dist-packages/pandas/core/generic.py", line 294, in _get_item_cache
values = self._data.get(item)
File "/usr/local/lib/python2.7/dist-packages/pandas/core/internals.py", line 625, in get
_, block = self._find_block(item)
File "/usr/local/lib/python2.7/dist-packages/pandas/core/internals.py", line 715, in _find_block
self._check_have(item)
File "/usr/local/lib/python2.7/dist-packages/pandas/core/internals.py", line 722, in _check_have
raise KeyError('no item named %s' % str(item))
KeyError: 'no item named Date'
より長い答え:
そのように印刷したい場合は、インデックスを独自の列に追加することで、DataFrame を変更できます。例えば:
>>> dfrm['Date'] = dfrm.index
>>> dfrm
A B C Date
Date
2012-06-01 0.283724 0.863012 0.798891 2012-06-01
2012-06-02 0.097231 0.277564 0.872306 2012-06-02
2012-06-03 0.821461 0.499485 0.126441 2012-06-03
2012-06-04 0.887782 0.389486 0.374118 2012-06-04
2012-06-05 0.248065 0.032287 0.850939 2012-06-05
2012-06-06 0.101917 0.121171 0.577643 2012-06-06
2012-06-07 0.225278 0.161301 0.708996 2012-06-07
2012-06-08 0.906042 0.828814 0.247564 2012-06-08
2012-06-09 0.733363 0.924076 0.393353 2012-06-09
2012-06-10 0.273837 0.318013 0.754807 2012-06-10
この後、インデックスの名前を単純に変更して、何も出力されないようにすることができます。
>>> dfrm.reindex(pandas.Series(dfrm.index.values, name=''))
A B C Date
2012-06-01 0.283724 0.863012 0.798891 2012-06-01
2012-06-02 0.097231 0.277564 0.872306 2012-06-02
2012-06-03 0.821461 0.499485 0.126441 2012-06-03
2012-06-04 0.887782 0.389486 0.374118 2012-06-04
2012-06-05 0.248065 0.032287 0.850939 2012-06-05
2012-06-06 0.101917 0.121171 0.577643 2012-06-06
2012-06-07 0.225278 0.161301 0.708996 2012-06-07
2012-06-08 0.906042 0.828814 0.247564 2012-06-08
2012-06-09 0.733363 0.924076 0.393353 2012-06-09
2012-06-10 0.273837 0.318013 0.754807 2012-06-10
これは少しやり過ぎのようです。別のオプションは、日付を列として追加した後、インデックスを整数などに変更することです。
>>> dfrm.reset_index()
または、すでに手動でインデックスを列に移動している場合は、
>>> dfrm.index = range(len(dfrm))
>>> dfrm
A B C Date
0 0.283724 0.863012 0.798891 2012-06-01
1 0.097231 0.277564 0.872306 2012-06-02
2 0.821461 0.499485 0.126441 2012-06-03
3 0.887782 0.389486 0.374118 2012-06-04
4 0.248065 0.032287 0.850939 2012-06-05
5 0.101917 0.121171 0.577643 2012-06-06
6 0.225278 0.161301 0.708996 2012-06-07
7 0.906042 0.828814 0.247564 2012-06-08
8 0.733363 0.924076 0.393353 2012-06-09
9 0.273837 0.318013 0.754807 2012-06-10
または、列が表示される順序が気になる場合は、次のようにします。
>>> dfrm.ix[:,[-1]+range(len(dfrm.columns)-1)]
Date A B C
0 2012-06-01 0.283724 0.863012 0.798891
1 2012-06-02 0.097231 0.277564 0.872306
2 2012-06-03 0.821461 0.499485 0.126441
3 2012-06-04 0.887782 0.389486 0.374118
4 2012-06-05 0.248065 0.032287 0.850939
5 2012-06-06 0.101917 0.121171 0.577643
6 2012-06-07 0.225278 0.161301 0.708996
7 2012-06-08 0.906042 0.828814 0.247564
8 2012-06-09 0.733363 0.924076 0.393353
9 2012-06-10 0.273837 0.318013 0.754807
追加した
iPython 構成スクリプトに含める (起動時にロードされるようにする) か、Python で作業するときに簡単にロードできるモジュールに入れるのに役立つ関数をいくつか紹介します。
###########
# Imports #
###########
import pandas
import datetime
import numpy as np
from dateutil import relativedelta
from pandas.io import data as pdata
############################################
# Functions to retrieve Yahoo finance data #
############################################
# Utility to get generic stock symbol data from Yahoo finance.
# Starts two days prior to present (or most recent business day)
# and goes back a specified number of days.
def getStockSymbolData(sym_list, end_date=datetime.date.today()+relativedelta.relativedelta(days=-1), num_dates = 30):
dReader = pdata.DataReader
start_date = end_date + relativedelta.relativedelta(days=-num_dates)
return dict( (sym, dReader(sym, "yahoo", start=start_date, end=end_date)) for sym in sym_list )
###
# Utility function to get some AAPL data when needed
# for testing.
def getAAPL(end_date=datetime.date.today()+relativedelta.relativedelta(days=-1), num_dates = 30):
dReader = pdata.DataReader
return getStockSymbolData(['AAPL'], end_date=end_date, num_dates=num_dates)
###
また、普通株のデータを保持するために以下のクラスを作成しました。
#####
# Define a 'Stock' class that can hold simple info
# about a security, like SEDOL and CUSIP info. This
# is mainly for debugging things and quickly getting
# info for a single security.
class MyStock():
def __init__(self, ticker='None', sedol='None', country='None'):
self.ticker = ticker
self.sedol=sedol
self.country = country
###
def getData(self, end_date=datetime.date.today()+relativedelta.relativedelta(days=-1), num_dates = 30):
return pandas.DataFrame(getStockSymbolData([self.ticker], end_date=end_date, num_dates=num_dates)[self.ticker])
###
#####
# Make some default stock objects for common stocks.
AAPL = MyStock(ticker='AAPL', sedol='03783310', country='US')
SAP = MyStock(ticker='SAP', sedol='484628', country='DE')