多くの X 変数と Y 変数 (500 x 500 など) があります。次の小さなデータ:
yvars <- data.frame (Yv1 = rnorm(100, 5, 3), Y2 = rnorm (100, 6, 4),
Yv3 = rnorm (100, 14, 3))
xvars <- data.frame (Xv1 = sample (c(1,0, -1), 100, replace = T),
X2 = sample (c(1,0, -1), 100, replace = T),
Xv3 = sample (c(1,0, -1), 100, replace = T),
D = sample (c(1,0, -1), 100, replace = T))
p値を抽出して、次のような行列を作成したい:
Yv1 Y2 Yv3
Xv1
X2
Xv3
D
プロセスをループする私の試みは次のとおりです。
prob = NULL
anova.pmat <- function (x) {
mydata <- data.frame(yvar = yvars[, x], xvars)
for (i in seq(length(xvars))) {
prob[[i]] <- anova(lm(yvar ~ mydata[, i + 1],
data = mydata))$`Pr(>F)`[1]
}
}
sapply (yvars,anova.pmat)
Error in .subset(x, j) : only 0's may be mixed with negative subscripts
What could be the solution ?
編集:
最初の Y 変数の場合:
最初の Y 変数の場合:
prob <- NULL
mydata <- data.frame(yvar = yvars[, 1], xvars)
for (i in seq(length(xvars))) {
prob[[i]] <- anova(lm(yvar ~ mydata[, i + 1],
data = mydata))$`Pr(>F)`[1]
}
prob
[1] 0.4995179 0.4067040 0.4181571 0.6291167
もう一度編集します。
for (j in seq(length (yvars))){
prob <- NULL
mydata <- data.frame(yvar = yvars[, j], xvars)
for (i in seq(length(xvars))) {
prob[[i]] <- anova(lm(yvar ~ mydata[, i + 1],
data = mydata))$`Pr(>F)`[1]
}
}
Gives the same result as above !!!