29

[更新:回答を受け入れましたが、視覚化のアイデアが追加されている場合は、別の回答を追加してください(Rまたは別の言語/プログラムのいずれか)。カテゴリデータ分析に関するテキストは、縦断的データの視覚化についてはあまり語っていないようですが、縦断的データ分析に関するテキストは、カテゴリメンバーシップの経時的な被験者内変化の視覚化についてはあまり語っていないようです。この質問に対する回答が多いほど、標準的なリファレンスではあまり取り上げられていない問題に関するより良いリソースになります。]

同僚が私に縦方向のカテゴリデータセットを提供してくれたので、視覚化で縦方向の側面をキャプチャする方法を見つけようとしています。Rでこれを行いたいので、ここに投稿しますが、クロスポストは一般的に推奨されていないため、Cross-Validatedにもクロスポストすることが理にかなっている場合はお知らせください。

クイックバックグラウンド:データは、アカデミックアドバイスプログラムを受講した学生の学期ごとの学業成績を追跡します。データは長い形式であり、「id」、「cohort」、「term」、「standing」、および「termGPA」の5つの変数があります。最初の2つは、学生と彼らがアドバイスプログラムに参加していた期間を示しています。最後の3つは、学生の学業成績とGPAが記録されたときの用語です。以下のサンプルデータをを使用して貼り付けましたdput

コホート、スタンディング、タームごとに生徒をグループ化するモザイクプロット(以下を参照)を作成しました。これは、各学期の各学業分野の学生の割合を示しています。しかし、これは長期的な側面、つまり個々の学生が時間の経過とともに追跡されるという事実を捉えていません。特定の学問的地位を持つ学生のグループが時間の経過とともにたどる道を追跡したいと思います。

例:2009年秋(「F09」)に「AP」(保護観察)に立っている学生のうち、将来的にはまだAPであった割合と、他のカテゴリ(GS、「良好な状態」など)に移動した割合はどれですか。アドバイスプログラムに参加してからの時間の経過に伴うカテゴリー間の移動に関して、コホート間に違いはありますか?

この縦方向の側面をRグラフィックでキャプチャする方法を完全に理解することはできませんでした。このパッケージには、カテゴリデータを視覚化する機能がありますが、縦方向vcdのカテゴリデータには対応していないようです。縦方向のカテゴリデータを視覚化するための「標準的な」方法はありますか?Rにはこのために設計されたパッケージがありますか?ロングフォーマットはこのタイプのデータに適していますか、それともワイドフォーマットの方が良いでしょうか?

この特定の問題を解決するための提案と、縦方向のカテゴリデータの視覚化についてさらに学ぶための記事や本などの提案をいただければ幸いです。

これが、モザイクプロットを作成するために使用したコードです。このコードは、以下にリストされているデータを。とともに使用しますdput

library(RColorBrewer)

# create a table object for plotting
df1.tab = table(df1$cohort, df1$term, df1$standing,
            dnn=c("Cohort\nAcademic Standing", "Term", "Standing"))

# create a mosaic plot
plot(df1.tab, las=1, dir=c("h","v","h"), 
     col=brewer.pal(8,"Dark2"),
     main="Fall 2009 and Fall 2010 Cohorts")

これがモザイクプロットです(副次的な質問:F10コホートの一部の用語のデータがない場合でも、F10コホートの列をF09コホートの列の真下に配置し、同じ幅にする方法はありますか?) :

ここに画像の説明を入力してください

そして、テーブルとプロットを作成するために使用されるデータは次のとおりです。

df1 =
structure(list(id = c(101L, 102L, 103L, 104L, 105L, 106L, 107L, 
108L, 109L, 110L, 111L, 112L, 113L, 114L, 115L, 116L, 117L, 118L, 
119L, 120L, 121L, 122L, 123L, 124L, 125L, 101L, 102L, 103L, 104L, 
105L, 106L, 107L, 108L, 109L, 110L, 111L, 112L, 113L, 114L, 115L, 
116L, 117L, 118L, 119L, 120L, 121L, 122L, 123L, 124L, 125L, 101L, 
102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L, 112L, 
113L, 114L, 115L, 116L, 117L, 118L, 119L, 120L, 121L, 122L, 123L, 
124L, 125L, 101L, 102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 
110L, 111L, 112L, 113L, 114L, 115L, 116L, 117L, 118L, 119L, 120L, 
121L, 122L, 123L, 124L, 125L, 101L, 102L, 103L, 104L, 105L, 106L, 
107L, 108L, 109L, 110L, 111L, 112L, 113L, 114L, 115L, 116L, 117L, 
118L, 119L, 120L, 121L, 122L, 123L, 124L, 125L, 101L, 102L, 103L, 
104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L, 112L, 113L, 114L, 
115L, 116L, 117L, 118L, 119L, 120L, 121L, 122L, 123L, 124L, 125L, 
101L, 102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L, 
112L, 113L, 114L, 115L, 116L, 117L, 118L, 119L, 120L, 121L, 122L, 
123L, 124L, 125L), cohort = structure(c(1L, 1L, 1L, 1L, 2L, 1L, 
1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 
1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 
2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 
1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 
1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 
2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 
1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L), .Label = c("F09", "F10"), class = c("ordered", 
"factor")), term = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L), .Label = c("S09", "F09", "S10", 
"F10", "S11", "F11", "S12"), class = c("ordered", "factor")), 
    standing = structure(c(2L, 4L, 1L, 4L, NA, 4L, 1L, NA, NA, 
    NA, NA, 2L, 2L, 1L, 4L, 4L, 1L, 3L, NA, NA, 4L, 3L, 1L, 4L, 
    NA, 2L, 1L, 3L, 3L, NA, 1L, 2L, NA, NA, NA, NA, 2L, 4L, 3L, 
    4L, 4L, 4L, 2L, NA, NA, 4L, 2L, 4L, 4L, NA, 3L, 4L, 6L, 6L, 
    1L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 4L, 6L, 4L, 4L, 1L, 4L, 1L, 
    2L, 4L, 3L, 1L, 4L, 1L, 6L, 1L, 6L, 6L, 7L, 4L, 4L, 2L, 2L, 
    4L, 2L, 6L, 4L, 6L, 7L, 4L, 2L, 4L, 1L, 2L, 4L, 6L, 6L, 4L, 
    2L, 2L, 3L, 6L, 6L, 7L, 4L, 4L, 3L, 4L, 4L, 6L, 2L, 1L, 6L, 
    6L, 4L, 2L, 1L, 7L, 2L, 4L, 6L, 6L, 4L, 4L, 3L, 6L, 4L, 6L, 
    2L, 4L, 4L, 6L, 4L, 4L, 6L, 3L, 2L, 6L, 6L, 4L, 2L, 6L, 3L, 
    4L, 4L, 6L, 6L, 4L, 4L, 5L, 6L, 4L, 6L, 4L, 4L, 4L, 5L, 4L, 
    4L, 6L, 6L, 2L, 6L, 6L, 4L, 3L, 6L, 6L, 4L, 4L, 6L, 6L, 4L, 
    4L), .Label = c("AP", "CP", "DQ", "GS", "DM", "NE", "WD"), class = "factor"), 
    termGPA = c(1.433, 1.925, 1, 1.68, NA, 1.579, 1.233, NA, 
    NA, NA, NA, 2.009, 1.675, 0, 1.5, 1.86, 0.5, 0.94, NA, NA, 
    1.777, 1.1, 1.133, 1.675, NA, 2, 1.25, 1.66, 0, NA, 1.525, 
    2.25, NA, NA, NA, NA, 1.66, 2.325, 0, 2.308, 1.6, 1.825, 
    2.33, NA, NA, 2.65, 2.65, 2.85, 3.233, NA, 1.25, 1.575, NA, 
    NA, 1, 2.385, 3.133, 0, 0, 1.729, 1.075, 0, 4, NA, 2.74, 
    0, 1.369, 2.53, 0, 2.65, 2.75, 0, 0.333, 3.367, 1, NA, 0.1, 
    NA, NA, 1, 2.2, 2.18, 2.31, 1.75, 3.073, 0.7, NA, 1.425, 
    NA, 2.74, 2.9, 0.692, 2, 0.75, 1.675, 2.4, NA, NA, 3.829, 
    2.33, 2.3, 1.5, NA, NA, NA, 2.69, 1.52, 0.838, 2.35, 1.55, 
    NA, 1.35, 0.66, NA, NA, 1.35, 1.9, 1.04, NA, 1.464, 2.94, 
    NA, NA, 3.72, 2.867, 1.467, NA, 3.133, NA, 1, 2.458, 1.214, 
    NA, 3.325, 2.315, NA, 1, 2.233, NA, NA, 2.567, 1, NA, 0, 
    3.325, 2.077, NA, NA, 3.85, 2.718, 1.385, NA, 2.333, NA, 
    2.675, 1.267, 1.6, 1.388, 3.433, 0.838, NA, NA, 0, NA, NA, 
    2.6, 0, NA, NA, 1, 2.825, NA, NA, 3.838, 2.883)), .Names = c("id", 
"cohort", "term", "standing", "termGPA"), row.names = c("101.F09.s09", 
"102.F09.s09", "103.F09.s09", "104.F09.s09", "105.F10.s09", "106.F09.s09", 
"107.F09.s09", "108.F10.s09", "109.F10.s09", "110.F10.s09", "111.F10.s09", 
"112.F09.s09", "113.F09.s09", "114.F09.s09", "115.F09.s09", "116.F09.s09", 
"117.F09.s09", "118.F09.s09", "119.F10.s09", "120.F10.s09", "121.F09.s09", 
"122.F09.s09", "123.F09.s09", "124.F09.s09", "125.F10.s09", "101.F09.f09", 
"102.F09.f09", "103.F09.f09", "104.F09.f09", "105.F10.f09", "106.F09.f09", 
"107.F09.f09", "108.F10.f09", "109.F10.f09", "110.F10.f09", "111.F10.f09", 
"112.F09.f09", "113.F09.f09", "114.F09.f09", "115.F09.f09", "116.F09.f09", 
"117.F09.f09", "118.F09.f09", "119.F10.f09", "120.F10.f09", "121.F09.f09", 
"122.F09.f09", "123.F09.f09", "124.F09.f09", "125.F10.f09", "101.F09.s10", 
"102.F09.s10", "103.F09.s10", "104.F09.s10", "105.F10.s10", "106.F09.s10", 
"107.F09.s10", "108.F10.s10", "109.F10.s10", "110.F10.s10", "111.F10.s10", 
"112.F09.s10", "113.F09.s10", "114.F09.s10", "115.F09.s10", "116.F09.s10", 
"117.F09.s10", "118.F09.s10", "119.F10.s10", "120.F10.s10", "121.F09.s10", 
"122.F09.s10", "123.F09.s10", "124.F09.s10", "125.F10.s10", "101.F09.f10", 
"102.F09.f10", "103.F09.f10", "104.F09.f10", "105.F10.f10", "106.F09.f10", 
"107.F09.f10", "108.F10.f10", "109.F10.f10", "110.F10.f10", "111.F10.f10", 
"112.F09.f10", "113.F09.f10", "114.F09.f10", "115.F09.f10", "116.F09.f10", 
"117.F09.f10", "118.F09.f10", "119.F10.f10", "120.F10.f10", "121.F09.f10", 
"122.F09.f10", "123.F09.f10", "124.F09.f10", "125.F10.f10", "101.F09.s11", 
"102.F09.s11", "103.F09.s11", "104.F09.s11", "105.F10.s11", "106.F09.s11", 
"107.F09.s11", "108.F10.s11", "109.F10.s11", "110.F10.s11", "111.F10.s11", 
"112.F09.s11", "113.F09.s11", "114.F09.s11", "115.F09.s11", "116.F09.s11", 
"117.F09.s11", "118.F09.s11", "119.F10.s11", "120.F10.s11", "121.F09.s11", 
"122.F09.s11", "123.F09.s11", "124.F09.s11", "125.F10.s11", "101.F09.f11", 
"102.F09.f11", "103.F09.f11", "104.F09.f11", "105.F10.f11", "106.F09.f11", 
"107.F09.f11", "108.F10.f11", "109.F10.f11", "110.F10.f11", "111.F10.f11", 
"112.F09.f11", "113.F09.f11", "114.F09.f11", "115.F09.f11", "116.F09.f11", 
"117.F09.f11", "118.F09.f11", "119.F10.f11", "120.F10.f11", "121.F09.f11", 
"122.F09.f11", "123.F09.f11", "124.F09.f11", "125.F10.f11", "101.F09.s12", 
"102.F09.s12", "103.F09.s12", "104.F09.s12", "105.F10.s12", "106.F09.s12", 
"107.F09.s12", "108.F10.s12", "109.F10.s12", "110.F10.s12", "111.F10.s12", 
"112.F09.s12", "113.F09.s12", "114.F09.s12", "115.F09.s12", "116.F09.s12", 
"117.F09.s12", "118.F09.s12", "119.F10.s12", "120.F10.s12", "121.F09.s12", 
"122.F09.s12", "123.F09.s12", "124.F09.s12", "125.F10.s12"), reshapeLong = structure(list(
    varying = list(c("s09as", "f09as", "s10as", "f10as", "s11as", 
    "f11as", "s12as"), c("s09termGPA", "f09termGPA", "s10termGPA", 
    "f10termGPA", "s11termGPA", "f11termGPA", "s12termGPA")), 
    v.names = c("standing", "termGPA"), idvar = c("id", "cohort"
    ), timevar = "term"), .Names = c("varying", "v.names", "idvar", 
"timevar")), class = "data.frame")
4

3 に答える 3

32

データをプロットするためのいくつかのアイデアがあります。私はggplot2を使用し、データを少し再フォーマットしました。

図1

ここに画像の説明を入力してください 積み上げ棒グラフを使用して、モザイクプロットを模倣し、配置の問題を解決しました。

図2

ここに画像の説明を入力してください 各学生のデータポイントは灰色の線で結ばれており、これは平行座標プロットを彷彿とさせます。ポイントに色を付けると、カテゴリの位置がわかります。y軸にGPAを使用すると、ポイントを広げてオーバープロットを減らすことができ、立っている状態とGPAの相関関係が示されます。主な問題はstanding、一致するtermGPA値がないために、多くの有効なデータポイントがドロップアウトすることです。

図3

ここに画像の説明を入力してください ここでは、ファセットに使用するinitial_standingという新しい変数を作成しました。各パネルには、コホートとinitial_standingの両方で一致する学生が含まれています。IDをテキストとしてプロットすると、この図は少し雑然としますが、場合によっては役立つことがあります。

図4

ここに画像の説明を入力してください このプロットは、各行が学生であるヒートマップのようなものです。軸の順序を制御して、idinitial_standingグループとコホートグループを強制的に一緒に維持しました。さらに多くの行がある場合は、ある種のクラスタリングによって行をソートすることを検討することをお勧めします。

library(ggplot2)

# Create new data frame for determining initial standing.
standing_data = data.frame(id=unique(df1$id), initial_standing=NA, cohort=NA)

for (i in 1:nrow(standing_data)) {
    id = standing_data$id[i]
    subdat = df1[df1$id == id, ]
    subdat = subdat[complete.cases(subdat), ]
    initial_standing = subdat$standing[which.min(subdat$term)]
    standing_data[i, "initial_standing"] = as.character(initial_standing)
    standing_data[i, "cohort"] = as.character(subdat$cohort[1])
}

standing_data$cohort = factor(standing_data$cohort, levels=levels(df1$cohort))
standing_data$initial_standing = factor(standing_data$initial_standing,
                                        levels=levels(df1$standing))

# Add the new column (initial_standing) to df1.
df1 = merge(df1, standing_data[, c("id", "initial_standing")], by="id")

# Remove rows where standing is missing. Make some plots tidier.
df1 = df1[!is.na(df1$standing), ]

# Create id factor, controlling the sort order of the levels.     
id_order = order(standing_data$initial_standing, standing_data$cohort)
df1$id = factor(df1$id, levels=as.character(standing_data$id)[id_order])


p1 = ggplot(df1, aes(x=term, fill=standing)) +
     geom_bar(position="fill", colour="grey20", size=0.5, width=1.0) +
     facet_grid(cohort ~ .) +
     scale_fill_brewer(palette="Set1")

p2 = ggplot(df1, aes(x=term, y=termGPA, group=id)) + 
     geom_line(colour="grey70") + 
     geom_point(aes(colour=standing), size=4) + 
     facet_grid(cohort ~ .) +
     scale_colour_brewer(palette="Set1")

p3 = ggplot(df1, aes(x=term, y=termGPA, group=id)) +
     geom_line(colour="grey70") + 
     geom_point(aes(colour=standing), size=4) + 
     geom_text(aes(label=id), hjust=-0.30, size=3) +
     facet_grid(initial_standing ~ cohort) +
     scale_colour_brewer(palette="Set1")


p4 = ggplot(df1, aes(x=term, y=id, fill=standing)) + 
     geom_tile(colour="grey20") +
     facet_grid(initial_standing ~ ., space="free_y", scales="free_y") +
     scale_fill_brewer(palette="Set1") +
     opts(panel.grid.major=theme_blank()) +
     opts(panel.grid.minor=theme_blank())

ggsave("plot_1.png", p1, width=10, height=6.25, dpi=80)
ggsave("plot_2.png", p2, width=10, height=6.25, dpi=80)
ggsave("plot_3.png", p3, width=10, height=6.25, dpi=80)
ggsave("plot_4.png", p4, width=10, height=6.25, dpi=80)
于 2012-07-17T07:38:09.610 に答える
9

私の質問を調査したところ、ここにリストする他のいくつかのオプションが見つかりました。

多くの比較的新しいRパッケージは、「ライフヒストリー」または「マルチステートシーケンス」データを視覚化および分析するために設計されています。アイデアは、時間の経過とともに、人々(またはオブジェクト)がさまざまなカテゴリに出入りすることです。たとえば、キャリアの変化、結婚と離婚、健康と病気、または私の場合は大学での学業成績のカテゴリです。

シーケンスまたはライフヒストリーデータを視覚化するためのRパッケージには、上記のコメントで@timriffeによって言及されたbiograph、およびTraMineRが含まれます。バイオグラフパッケージの作者であるFransWillekensは、パッケージに関する本、Biographを持っています。今年の秋にSpringerから出版されるRによる生活史の多状態分析。TraMineRには、上記のリンクに詳細なユーザーマニュアルがあり、JSSの短い記事もあります。JSSには、リスク分析のコンテキストでのマルチステートモデルに関する特別な問題もあり、マルチステートモデリング用の追加のRパッケージについて説明しています。

また、時間の経過に伴うカテゴリ間の動きを視覚化するように設計された特殊なソフトウェアもいくつか見つかりました。Parallel Setsは、柔軟性に制限がありますが、基本的な視覚化を作成するためのシンプルで無料のプログラムです。ライフフローはより洗練されています。これも無料ですが、コピーをリクエストするメールを作成者に送信する必要があります。

これらのツールを試す機会があったら、この回答にさらに詳細を追加します。

于 2012-07-18T18:03:12.017 に答える
5

この問題を解決するためにRパッケージを作成する前に、@ bdemarestの答えを見つけていればよかったのですが、OPが追加の更新を要求したので、もう1つの解決策を共有します。図4でbdemarestが提案したのは、私が一種の水平折れ線グラフと呼んでいるものです。

Rパッケージの開発では、特に問題のサイズが大きくなるにつれて、longCatEDAデータの並べ替えが有用なプロットを作成するために重要であることがわかりました(技術的な詳細については、以下のコメントにリンクされているレポートを参照してください)。example(sorter)たとえば、3年間(> 1000日)にわたる数千人の参加者の毎日の飲酒データ(禁欲、使用、乱用)で問題を開始しました。

@eipi10のデータに水平折れ線グラフを適用するコードは次のとおりです。図1はによって階層化されterm、図2は@bdemarestの図4と同様に最初のステータスによって階層化されますが、階層内の並べ替えのために結果は同じではありません。

図1

用語で階層化された水平折れ線グラフ

図2

初期状態で階層化された水平折れ線グラフ

# libraries
install.packages('longCatEDA')
library(longCatEDA)
library(RColorBrewer)

# transform data long to wide
dfw <- reshape(df1,
           timevar = 'term',
           idvar = c('id', 'cohort'),
           direction = 'wide')

# set up objects required by longCat()
y <- dfw[,seq(3,15,by=2)]
Labels <- levels(df1$standing)
tLabels <- levels(df1$term)
groupLabels <- levels(dfw$cohort)

# use the same colors as bdemarest
cols <- brewer.pal(7, "Set1")

# plot the longCat object
png('plot1.png', width=10, height=6.25, units='in', res=100)
par(bg='cornsilk3', mar=c(5.1, 4.1, 4.1, 8.1), xpd=TRUE)
lc <- longCat(y=y, Labels=Labels, tLabels=tLabels, id=dfw$id) 
longCatPlot(lc, cols=cols, xlab='Term', lwd=8, legendBuffer=0)
legend(8.1, 25, legend=Labels, col=cols, lty=1, lwd=4)
dev.off()

# stratify by term
png('plot2.png', width=10, height=6.25, units='in', res=100)
par(bg='cornsilk3', mar=c(5.1, 4.1, 4.1, 8.1), xpd=TRUE)
lc.g <- sorter(lc, group=dfw$cohort, groupLabels=groupLabels)
longCatPlot(lc.g, cols=cols, xlab='Term', lwd=8, legendBuffer=0) 
legend(8.1, 25, legend=Labels, col=cols, lty=1, lwd=4)
dev.off()

# stratify by first status, akin to Figure 4 by bdemarest
png('plot2.png', width=10, height=6.25, units='in', res=100)
par(bg='cornsilk3', mar=c(5.1, 4.1, 4.1, 8.1), xpd=TRUE)
first <- apply(!is.na(y), 1, function(x) which(x)[1])
first <- y[cbind(seq_along(first), first)]
lc.1 <- sorter(lc, group=factor(first), groupLabels = sort(unique(first)))
longCatPlot(lc.1, cols=cols, xlab='Term', lwd=8, legendBuffer=0) 
legend(8.1, 25, legend=Labels, col=cols, lty=1, lwd=4)
dev.off()
于 2017-01-23T17:31:59.323 に答える