これは私が今月初めに持っていた私の質問に似ています。
import random
def RandFloats(Size):
Scalar = 1.0
VectorSize = Size
RandomVector = [random.random() for i in range(VectorSize)]
RandomVectorSum = sum(RandomVector)
RandomVector = [Scalar*i/RandomVectorSum for i in RandomVector]
return RandomVector
from numpy.random import multinomial
import math
def RandIntVec(ListSize, ListSumValue, Distribution='Normal'):
"""
Inputs:
ListSize = the size of the list to return
ListSumValue = The sum of list values
Distribution = can be 'uniform' for uniform distribution, 'normal' for a normal distribution ~ N(0,1) with +/- 5 sigma (default), or a list of size 'ListSize' or 'ListSize - 1' for an empirical (arbitrary) distribution. Probabilities of each of the p different outcomes. These should sum to 1 (however, the last element is always assumed to account for the remaining probability, as long as sum(pvals[:-1]) <= 1).
Output:
A list of random integers of length 'ListSize' whose sum is 'ListSumValue'.
"""
if type(Distribution) == list:
DistributionSize = len(Distribution)
if ListSize == DistributionSize or (ListSize-1) == DistributionSize:
Values = multinomial(ListSumValue,Distribution,size=1)
OutputValue = Values[0]
elif Distribution.lower() == 'uniform': #I do not recommend this!!!! I see that it is not as random (at least on my computer) as I had hoped
UniformDistro = [1/ListSize for i in range(ListSize)]
Values = multinomial(ListSumValue,UniformDistro,size=1)
OutputValue = Values[0]
elif Distribution.lower() == 'normal':
"""
Normal Distribution Construction....It's very flexible and hideous
Assume a +-3 sigma range. Warning, this may or may not be a suitable range for your implementation!
If one wishes to explore a different range, then changes the LowSigma and HighSigma values
"""
LowSigma = -3#-3 sigma
HighSigma = 3#+3 sigma
StepSize = 1/(float(ListSize) - 1)
ZValues = [(LowSigma * (1-i*StepSize) +(i*StepSize)*HighSigma) for i in range(int(ListSize))]
#Construction parameters for N(Mean,Variance) - Default is N(0,1)
Mean = 0
Var = 1
#NormalDistro= [self.NormalDistributionFunction(Mean, Var, x) for x in ZValues]
NormalDistro= list()
for i in range(len(ZValues)):
if i==0:
ERFCVAL = 0.5 * math.erfc(-ZValues[i]/math.sqrt(2))
NormalDistro.append(ERFCVAL)
elif i == len(ZValues) - 1:
ERFCVAL = NormalDistro[0]
NormalDistro.append(ERFCVAL)
else:
ERFCVAL1 = 0.5 * math.erfc(-ZValues[i]/math.sqrt(2))
ERFCVAL2 = 0.5 * math.erfc(-ZValues[i-1]/math.sqrt(2))
ERFCVAL = ERFCVAL1 - ERFCVAL2
NormalDistro.append(ERFCVAL)
#print "Normal Distribution sum = %f"%sum(NormalDistro)
Values = multinomial(ListSumValue,NormalDistro,size=1)
OutputValue = Values[0]
else:
raise ValueError ('Cannot create desired vector')
return OutputValue
else:
raise ValueError ('Cannot create desired vector')
return OutputValue
ProbabilityDistibution = RandFloats(1200)#This is your probability distribution for your 1200 cell array
SizeDistribution = RandIntVec(1200,100,Distribution=ProbabilityDistribution)#for a 1200 cell array, whose sum is 100 with given probability distribution
重要な2つの主要な行は、上記のコードの最後の2行です。