5

Numpy / SciPyの高速フーリエ変換(FFT)はスレッド化されていません。Enthought Pythonには、スレッド化されたFFTが可能なIntelMKL数値ライブラリが付属しています。これらのルーチンにアクセスするにはどうすればよいですか?

4

3 に答える 3

3

次のコードは、Windows 7 Ultimate64ビット上のEnthought7.3-1(64ビット)で機能します。ベンチマークはしていませんが、1つだけではなく、すべてのコアを一度に使用します。

from ctypes import *

class Mkl_Fft:
    c_double_p = POINTER(c_double)

    def __init__(self,num_threads=8):
        self.dfti = cdll.LoadLibrary("mk2_rt.dll")
        self.dfti.MKL_Set_Num_Threads(num_threads)
        self.Create = self.dfti.DftiCreateDescriptor_d_md
        self.Commit = self.dfti.DftiCommitDescriptor
        self.ComputeForward = self.dfti.DftiComputeForward

    def fft(self,a):
        Desc_Handle = c_void_p(0)
        dims = (c_int*2)(*a.shape)
        DFTI_COMPLEX = c_int(32)
        rank = 2

        self.Create(byref(Desc_Handle), DFTI_COMPLEX, rank, dims )
        self.Commit(Desc_Handle)
        self.ComputeForward(Desc_Handle, a.ctypes.data_as(self.c_double_p) )

使用法:

import numpy as np
a = np.ones( (32,32), dtype = complex128 )
fft = Mkl_Fft()
fft.fft(a)
于 2012-08-01T05:14:45.323 に答える
2

入力配列と出力配列の任意のストライドを処理する、新しく改良されたバージョン。デフォルトでは、これはインプレースではなく、新しい配列を作成します。正規化が異なることを除いて、Numpy FFT ルーチンを模倣します。

''' Wrapper to MKL FFT routines '''

import numpy as _np
import ctypes as _ctypes

mkl = _ctypes.cdll.LoadLibrary("mk2_rt.dll")
_DFTI_COMPLEX = _ctypes.c_int(32)
_DFTI_DOUBLE = _ctypes.c_int(36)
_DFTI_PLACEMENT = _ctypes.c_int(11)
_DFTI_NOT_INPLACE = _ctypes.c_int(44)
_DFTI_INPUT_STRIDES = _ctypes.c_int(12)
_DFTI_OUTPUT_STRIDES = _ctypes.c_int(13)

def fft2(a, out=None):
    ''' 
Forward two-dimensional double-precision complex-complex FFT.
Uses the Intel MKL libraries distributed with Enthought Python.
Normalisation is different from Numpy!
By default, allocates new memory like 'a' for output data.
Returns the array containing output data.
'''

    assert a.dtype == _np.complex128
    assert len(a.shape) == 2

    inplace = False

    if out is a:
        inplace = True

    elif out is not None:
        assert out.dtype == _np.complex128
        assert a.shape == out.shape
        assert not _np.may_share_memory(a, out)

    else:
        out = _np.empty_like(a)

    Desc_Handle = _ctypes.c_void_p(0)
    dims = (_ctypes.c_int*2)(*a.shape)

    mkl.DftiCreateDescriptor(_ctypes.byref(Desc_Handle), _DFTI_DOUBLE, _DFTI_COMPLEX, _ctypes.c_int(2), dims )

    #Set input strides if necessary
    if not a.flags['C_CONTIGUOUS']:
        in_strides = (_ctypes.c_int*3)(0, a.strides[0]/16, a.strides[1]/16)
        mkl.DftiSetValue(Desc_Handle, _DFTI_INPUT_STRIDES, _ctypes.byref(in_strides))

    if inplace:
        #Inplace FFT
        mkl.DftiCommitDescriptor(Desc_Handle)
        mkl.DftiComputeForward(Desc_Handle, a.ctypes.data_as(_ctypes.c_void_p) )

    else:
        #Not-inplace FFT
        mkl.DftiSetValue(Desc_Handle, _DFTI_PLACEMENT, _DFTI_NOT_INPLACE)

        #Set output strides if necessary
        if not out.flags['C_CONTIGUOUS']:
            out_strides = (_ctypes.c_int*3)(0, out.strides[0]/16, out.strides[1]/16)
            mkl.DftiSetValue(Desc_Handle, _DFTI_OUTPUT_STRIDES, _ctypes.byref(out_strides))

        mkl.DftiCommitDescriptor(Desc_Handle)
        mkl.DftiComputeForward(Desc_Handle, a.ctypes.data_as(_ctypes.c_void_p), out.ctypes.data_as(_ctypes.c_void_p) )

    mkl.DftiFreeDescriptor(_ctypes.byref(Desc_Handle))

    return out

def ifft2(a, out=None):
    ''' 
Backward two-dimensional double-precision complex-complex FFT.
Uses the Intel MKL libraries distributed with Enthought Python.
Normalisation is different from Numpy!
By default, allocates new memory like 'a' for output data.
Returns the array containing output data.
'''

    assert a.dtype == _np.complex128
    assert len(a.shape) == 2

    inplace = False

    if out is a:
        inplace = True

    elif out is not None:
        assert out.dtype == _np.complex128
        assert a.shape == out.shape
        assert not _np.may_share_memory(a, out)

    else:
        out = _np.empty_like(a)

    Desc_Handle = _ctypes.c_void_p(0)
    dims = (_ctypes.c_int*2)(*a.shape)

    mkl.DftiCreateDescriptor(_ctypes.byref(Desc_Handle), _DFTI_DOUBLE, _DFTI_COMPLEX, _ctypes.c_int(2), dims )

    #Set input strides if necessary
    if not a.flags['C_CONTIGUOUS']:
        in_strides = (_ctypes.c_int*3)(0, a.strides[0]/16, a.strides[1]/16)
        mkl.DftiSetValue(Desc_Handle, _DFTI_INPUT_STRIDES, _ctypes.byref(in_strides))

    if inplace:
        #Inplace FFT
        mkl.DftiCommitDescriptor(Desc_Handle)
        mkl.DftiComputeBackward(Desc_Handle, a.ctypes.data_as(_ctypes.c_void_p) )

    else:
        #Not-inplace FFT
        mkl.DftiSetValue(Desc_Handle, _DFTI_PLACEMENT, _DFTI_NOT_INPLACE)

        #Set output strides if necessary
        if not out.flags['C_CONTIGUOUS']:
            out_strides = (_ctypes.c_int*3)(0, out.strides[0]/16, out.strides[1]/16)
            mkl.DftiSetValue(Desc_Handle, _DFTI_OUTPUT_STRIDES, _ctypes.byref(out_strides))

        mkl.DftiCommitDescriptor(Desc_Handle)
        mkl.DftiComputeBackward(Desc_Handle, a.ctypes.data_as(_ctypes.c_void_p), out.ctypes.data_as(_ctypes.c_void_p) )

    mkl.DftiFreeDescriptor(_ctypes.byref(Desc_Handle))

    return out
于 2014-04-09T02:37:26.123 に答える