35

式テンプレートの1つの特定の利点を見てみましょう。ETを使用すると、次のようなオーバーロードされた演算子で発生する、メモリ内のベクトルサイズの一時的なものを回避できます。

template<typename T>
std::vector<T> operator+(const std::vector<T>& a, const std::vector<T>& b)
{
  std::vector<T> tmp;   // vector-sized temporary
  for_each(...);
  return tmp;
}

C ++ 11では、この関数のreturnステートメントは移動セマンティクスを適用します。ベクトルのコピーはありません。それは勝利です。

しかし、私が次のような単純な表現を見ると

d = a + b + c;

上記の関数は(両方に対してoperator+)2回呼び出されますが、最終的な割り当ては移動セマンティクスで実行できます。

合計2つのループが実行されます。一時的に出して、すぐに読み返すという意味です。大きなベクトルの場合、これはキャッシュから外れます。これは、式テンプレートよりも悪いです。彼らはたった1つのループですべてを行うことができます。ETは、次と同等の上記のコードを実行できます。

for(int i=0 ; i < vec_length ; ++i)
  d[i] = a[i] + b[i] + c[i];

ラムダと移動セマンティクスまたはその他の新機能を組み合わせてETと同じくらいうまくいくかどうか疑問に思いました。何かご意見は?

編集:

基本的に、コンパイラはET手法を使用して、型システムを使用した代数式に似た解析ツリーを構築します。このツリーは、内部ノードとリーフノードで構成されています。内部ノードは操作(加算、乗算など)を表し、リーフノードはデータオブジェクトへの参照を表します。

計算プロセス全体をスタックマシンのように考えてみました。操作スタックから操作を取得し、引数スタックから次の引数を取得して、操作を評価します。結果をスタックに戻し、操作を待機します。

これらの2つの異なるオブジェクト(操作スタックとデータリーフスタック)を表すstd::tupleために、操作用の aとデータリーフ用のaをにバンドルしstd::tupleましたstd::pair<>。最初はを使用しましたstd:vectorが、実行時のオーバーヘッドが発生しました。

プロセス全体は2つのフェーズで行われます。スタックマシンの初期化では、操作と引数のスタックが初期化されます。そして、ペアのコンテナをベクトルに割り当てることによってトリガーされる評価フェーズ。

Vecプライベートarray<int,5>(ペイロード)を保持し、「式」を受け取るオーバーロードされた代入演算子を特徴とするクラスを作成しました。

グローバルoperator*は、takeingと "expression"のすべての組み合わせでオーバーロードされ Vec、がだけではない場合にも正しい処理を可能にしますa*bimull(注意してください、私はこの教育的な例を乗算に切り替えました-基本的にはアセンブラーですばやく見つけるためです。)

Vec評価を開始する前に最初に行うことは、関連するオブジェクトから値を「抽出」し、引数スタックを初期化することです。これは、インデックス付け可能なベクトルとインデックス付け不可能な結果など、さまざまな種類のオブジェクトが存在しないようにするために必要でした。これが Extractor目的です。繰り返しになりますが、可変個引数テンプレートが使用されます。この場合、実行時のオーバーヘッドは発生しません(これはすべてコンパイル時に行われます)。

すべてが機能します。式は適切に評価されます(追加も追加しましたが、コードに合わせるためにここでは省略しています)。以下に、アセンブラの出力を示します。まさにあなたが望むように、生の計算:ET技術と同等。

アップショット。C ++ 11の新しい言語機能は、(テンプレートメタプログラミングとともに)コンパイル時の計算の領域を開く可変個引数テンプレートを提供します。ここでは、可変個引数テンプレートの利点を使用して、従来のET手法と同じくらい優れたコードを生成する方法を示しました。

#include<algorithm>
#include<iostream>
#include<vector>
#include<tuple>
#include<utility>
#include<array>



template<typename Target,typename Tuple, int N, bool end>
struct Extractor {
  template < typename ... Args >
  static Target index(int i,const Tuple& t, Args && ... args)
  {
    return Extractor<Target, Tuple,  N+1, 
             std::tuple_size<Tuple>::value == N+1>::
      index(i, t , std::forward<Args>(args)..., std::get<N>(t).vec[i] );
  }
};

template < typename Target, typename Tuple, int N >
struct Extractor<Target,Tuple,N,true>
{
    template < typename ... Args >
    static Target index(int i,Tuple const& t, 
            Args && ... args) { 
      return Target(std::forward<Args>(args)...); }
};

template < typename ... Vs > 
std::tuple<typename std::remove_reference<Vs>::type::type_t...>
extract(int i , const std::tuple<Vs...>& tpl)
{
  return Extractor<std::tuple<typename std::remove_reference<Vs>::type::type_t...>,
           std::tuple<Vs...>, 0,
           std::tuple_size<std::tuple<Vs...> >::value == 0>::index(i,tpl);
}


struct Vec {
  std::array<int,5> vec;
  typedef int type_t;

  template<typename... OPs,typename... VALs>
  Vec& operator=(const std::pair< std::tuple<VALs...> , std::tuple<OPs...> >& e) {
    for( int i = 0 ; i < vec.size() ; ++i ) {
      vec[i] = eval( extract(i,e.first) , e.second );
    }
  }
};




template<int OpPos,int ValPos, bool end>
struct StackMachine {
  template<typename... OPs,typename... VALs>
  static void eval_pos( std::tuple<VALs...>& vals , const std::tuple<OPs...> & ops )
  {
    std::get<ValPos+1>( vals ) =
      std::get<OpPos>(ops).apply( std::get<ValPos>( vals ) , 
                  std::get<ValPos+1>( vals ) );
    StackMachine<OpPos+1,ValPos+1,sizeof...(OPs) == OpPos+1>::eval_pos(vals,ops);
  }
};

template<int OpPos,int ValPos>
struct StackMachine<OpPos,ValPos,true> {
  template<typename... OPs,typename... VALs>
  static void eval_pos( std::tuple<VALs...>& vals , 
            const std::tuple<OPs...> & ops )
  {}
};



template<typename... OPs,typename... VALs>
int eval( const std::tuple<VALs...>& vals , const std::tuple<OPs...> & ops )
{
  StackMachine<0,0,false>::eval_pos(const_cast<std::tuple<VALs...>&>(vals),ops);
  return std::get<sizeof...(OPs)>(vals);
}




struct OpMul {
  static int apply(const int& lhs,const int& rhs)  {
    return lhs*rhs;
  }
};

std::pair< std::tuple< const Vec&, const Vec& > , std::tuple<OpMul> >
operator*(const Vec& lhs,const Vec& rhs)
{
  return std::make_pair( std::tuple< const Vec&, const Vec& >( lhs , rhs ) , 
             std::tuple<OpMul>( OpMul() ) );
}

template<typename... OPs,typename... VALs>
std::pair< std::tuple< const Vec&, VALs... > , std::tuple<OPs...,OpMul> >
operator*(const Vec& lhs,const std::pair< std::tuple< VALs... > , std::tuple<OPs...> >& rhs)
{
  return std::make_pair( std::tuple_cat( rhs.first , std::tuple< const Vec& >(lhs)  ) , 
             std::tuple_cat( rhs.second , std::tuple<OpMul>( OpMul() )  ) );
}

template<typename... OPs,typename... VALs>
std::pair< std::tuple< const Vec&, VALs... > , std::tuple<OPs...,OpMul> >
operator*(const std::pair< std::tuple< VALs... > , std::tuple<OPs...> >& lhs,
      const Vec& rhs)
{
  return std::make_pair( std::tuple_cat( lhs.first , std::tuple< const Vec& >(rhs)  ) , 
             std::tuple_cat( lhs.second , std::tuple<OpMul>( OpMul() ) ) );
}

int main()
{
  Vec d,c,b,a;


  for( int i = 0 ; i < d.vec.size() ; ++i ) {
    a.vec[i] = 10+i;
    b.vec[i] = 20+i;
    c.vec[i] = 30+i;
    d.vec[i] = 0;
  }

  d = a * b * c * a;

  for( int i = 0 ; i < d.vec.size() ; ++i ) 
    std::cout << d.vec[i] << std::endl;
}

で生成されたアセンブラg++-4.6 -O3(コンパイラがコンパイル時にすべてを計算せず、実際にインスタンスが表示されるように、実行時の依存関係をベクトルの初期化にimull含める必要がありました。)

imull   %esi, %edx
imull   32(%rsp), %edx
imull   %edx, %esi
movl    68(%rsp), %edx
imull   %ecx, %edx
movl    %esi, (%rsp)
imull   36(%rsp), %edx
imull   %ecx, %edx
movl    104(%rsp), %ecx
movl    %edx, 4(%rsp)
movl    72(%rsp), %edx
imull   %ecx, %edx
imull   40(%rsp), %edx
imull   %ecx, %edx
movl    108(%rsp), %ecx
movl    %edx, 8(%rsp)
movl    76(%rsp), %edx
imull   %ecx, %edx
imull   44(%rsp), %edx
imull   %ecx, %edx
movl    112(%rsp), %ecx
movl    %edx, 12(%rsp)
movl    80(%rsp), %edx
imull   %ecx, %edx
imull   %eax, %edx
imull   %ecx, %edx
movl    %edx, 16(%rsp)
4

2 に答える 2

46

ラムダと移動セマンティクスまたはその他の新機能を組み合わせてETと同じくらいうまくいくかどうか疑問に思いました。何かご意見は?

素早い回答

移動セマンティクスは、それ自体が完全な万能薬ではありません。データの移動などのオーバーヘッドを排除するために、C ++ 11でも式テンプレート(ET)などの手法が必要です。したがって、私の答えの残りの部分に飛び込む前に質問にすばやく答えるために、セマンティクスの移動などは、私の答えが以下に示すようにETを完全に置き換えるわけではありません。

詳細な回答

ETは通常、プロキシオブジェクトを返し、評価を後回しにするため、計算をトリガーするコードまで、C++11言語機能の明らかな利点はすぐにはありません。とはいえ、プロキシを使用した式ツリーの構築中に実行時のコード生成をトリガーするETコードを記述したくない場合もあります。うまくいけば、C ++ 11の移動セマンティクスと完全な転送は、他の方法で発生した場合にそのようなオーバーヘッドを回避するのに役立ちます。(これはC ++ 03では不可能でした。)

基本的に、ETを作成する場合、関連するプロキシオブジェクトのメンバー関数が呼び出されると、最適なコードを生成する方法で言語機能を活用する必要があります。C ++ 11では、これには、完全な転送の使用、コピーよりもセマンティクスの移動などが含まれます。これは、コンパイラーがすでに実行できる以上に実際に必要な場合です。ゲームの名前は、生成される実行時コードを最小化すること、および/または実行時速度を最大化すること、および/または実行時オーバーヘッドを最小化することです。

C ++ 11機能を備えたいくつかのETを実際に試して、式を使用してすべての中間一時インスタンスタイプを削除できるかどうかを確認したいと思いましたa = b + c + d;。(これは私の通常の活動からの楽しい休憩だったので、純粋にC ++ 03を使用してETコードと比較したり、ETコードを記述したりしませんでした。また、以下に示すコード研磨のすべての側面について心配しませんでした。)

そもそも、明示的な型と関数を使用することを好んだので、ラムダを使用しなかったので、あなたの質問に関してラムダに賛成/反対することはしません。私の推測では、ファンクターを使用し、以下の非ETコードよりも優れたパフォーマンスを発揮することはないと思います(つまり、移動が必要になります)。少なくとも、コンパイラーが独自の内部ETを使用してラムダを自動的に最適化できるようになるまでは。ただし、私が作成したコードは、移動セマンティクスと完全な転送を利用しています。これが私が結果から始めて、最後にコードを提示することでした。

の内部プライベートインスタンスを定義するmath_vector<N>クラスを作成しました。メンバーは、デフォルトのコンストラクター、コンストラクターと代入のコピーと移動、初期化子リストコンストラクター、デストラクタ、swap()メンバー、ベクトルの要素にアクセスするための演算子[]、および演算子+=です。式テンプレートなしで使用されるこのコード:N==3std::array<long double, N>

{
  cout << "CASE 1:\n";
  math_vector<3> a{1.0, 1.1, 1.2};
  math_vector<3> b{2.0, 2.1, 2.2};
  math_vector<3> c{3.0, 3.1, 3.2};
  math_vector<3> d{4.0, 4.1, 4.2};
  math_vector<3> result = a + b + c + d;
  cout << '[' << &result << "]: " << result << "\n";
}

clang++出力( 3.1またはg++4.8で-を使用してコンパイルした場合std=c++11 -O3):

CASE 1:
0x7fff8d6edf50: math_vector(initlist)
0x7fff8d6edef0: math_vector(initlist)
0x7fff8d6ede90: math_vector(initlist)
0x7fff8d6ede30: math_vector(initlist)
0x7fff8d6edd70: math_vector(copy: 0x7fff8d6edf50)
0x7fff8d6edda0: math_vector(move: 0x7fff8d6edd70)
0x7fff8d6eddd0: math_vector(move: 0x7fff8d6edda0)
0x7fff8d6edda0: ~math_vector()
0x7fff8d6edd70: ~math_vector()
[0x7fff8d6eddd0]: (10,10.4,10.8)
0x7fff8d6eddd0: ~math_vector()
0x7fff8d6ede30: ~math_vector()
0x7fff8d6ede90: ~math_vector()
0x7fff8d6edef0: ~math_vector()
0x7fff8d6edf50: ~math_vector()

つまり、初期化リスト(つまり、initlistアイテム)、result変数(つまり、0x7fff8d6eddd0)を使用して、4つの明示的に構築されたインスタンスを作成し、さらに3つのオブジェクトをコピーおよび移動します。

一時変数と移動のみに焦点を当てるために、名前付き変数としてのみ作成する2番目のケースを作成resultしました。その他はすべて右辺値です。

{
  cout << "CASE 2:\n";
  math_vector<3> result =
    math_vector<3>{1.0, 1.1, 1.2} +
    math_vector<3>{2.0, 2.1, 2.2} +
    math_vector<3>{3.0, 3.1, 3.2} +
    math_vector<3>{4.0, 4.1, 4.2}
  ;
  cout << '[' << &result << "]: " << result << "\n";
}

これを出力します(これもETが使用されていない場合)。

CASE 2:
0x7fff8d6edcb0: math_vector(initlist)
0x7fff8d6edc50: math_vector(initlist)
0x7fff8d6edce0: math_vector(move: 0x7fff8d6edcb0)
0x7fff8d6edbf0: math_vector(initlist)
0x7fff8d6edd10: math_vector(move: 0x7fff8d6edce0)
0x7fff8d6edb90: math_vector(initlist)
0x7fff8d6edd40: math_vector(move: 0x7fff8d6edd10)
0x7fff8d6edb90: ~math_vector()
0x7fff8d6edd10: ~math_vector()
0x7fff8d6edbf0: ~math_vector()
0x7fff8d6edce0: ~math_vector()
0x7fff8d6edc50: ~math_vector()
0x7fff8d6edcb0: ~math_vector()
[0x7fff8d6edd40]: (10,10.4,10.8)
0x7fff8d6edd40: ~math_vector()

これはより良いです:余分な移動オブジェクトのみが作成されます。

しかし、私はもっと良いものが欲しかったのです。余分な一時的なものをゼロにし、コードを1つの通常のコーディング警告でハードコーディングしたかのようにしたいのです。明示的にインスタンス化されたすべての型は引き続き作成されます(つまり、4つのinitlistコンストラクターとresult)。これを実現するために、次のように式テンプレートコードを追加しました。

  1. math_vector_expr<LeftExpr,BinaryOp,RightExpr>まだ計算されていない式を保持するためにプロキシクラスが作成されました。
  2. 加算演算を保持するためにプロキシplus_opクラスが作成されました。
  3. math_vectorオブジェクトを受け入れるためにコンストラクターが追加されmath_vector_expr、そして、
  4. 式テンプレートの作成をトリガーするために、「スターター」メンバー関数が追加されました。

ETを使用した結果は素晴らしいです:どちらの場合でも余分な一時的なものはありません!上記の前の2つのケースは、次のように出力されます。

CASE 1:
0x7fffe7180c60: math_vector(initlist)
0x7fffe7180c90: math_vector(initlist)
0x7fffe7180cc0: math_vector(initlist)
0x7fffe7180cf0: math_vector(initlist)
0x7fffe7180d20: math_vector(expr: 0x7fffe7180d90)
[0x7fffe7180d20]: (10,10.4,10.8)
0x7fffe7180d20: ~math_vector()
0x7fffe7180cf0: ~math_vector()
0x7fffe7180cc0: ~math_vector()
0x7fffe7180c90: ~math_vector()
0x7fffe7180c60: ~math_vector()

CASE 2:
0x7fffe7180dd0: math_vector(initlist)
0x7fffe7180e20: math_vector(initlist)
0x7fffe7180e70: math_vector(initlist)
0x7fffe7180eb0: math_vector(initlist)
0x7fffe7180d20: math_vector(expr: 0x7fffe7180dc0)
0x7fffe7180eb0: ~math_vector()
0x7fffe7180e70: ~math_vector()
0x7fffe7180e20: ~math_vector()
0x7fffe7180dd0: ~math_vector()
[0x7fffe7180d20]: (10,10.4,10.8)
0x7fffe7180d20: ~math_vector()

つまり、それぞれ5つのコンストラクタ呼び出しと5つのデストラクタ呼び出しです。initlist実際、4つのコンストラクター呼び出しの間にアセンブラー・コードを生成するようコンパイラーに要求すると、 result1つを出力すると、この美しいアセンブラー・コードの文字列が得られます。

fldt    128(%rsp)
leaq    128(%rsp), %rdi
leaq    80(%rsp), %rbp
fldt    176(%rsp)
faddp   %st, %st(1)
fldt    224(%rsp)
faddp   %st, %st(1)
fldt    272(%rsp)
faddp   %st, %st(1)
fstpt   80(%rsp)
fldt    144(%rsp)
fldt    192(%rsp)
faddp   %st, %st(1)
fldt    240(%rsp)
faddp   %st, %st(1)
fldt    288(%rsp)
faddp   %st, %st(1)
fstpt   96(%rsp)
fldt    160(%rsp)
fldt    208(%rsp)
faddp   %st, %st(1)
fldt    256(%rsp)
faddp   %st, %st(1)
fldt    304(%rsp)
faddp   %st, %st(1)
fstpt   112(%rsp)

同様の(さらに小さい)コードを使用しg++て出力します。clang++関数呼び出しなどはありません。まさに欲しいものである追加の束だけです!

これを実現するためのC++11コードは次のとおりです。単に#define DONT_USE_EXPR_TEMPLETを使用しないか、ETを使用するように定義しないでください。

#include <array>
#include <algorithm>
#include <initializer_list>
#include <type_traits>
#include <iostream>

//#define DONT_USE_EXPR_TEMPL

//===========================================================================

template <std::size_t N> class math_vector;

template <
  typename LeftExpr,
  typename BinaryOp,
  typename RightExpr
>
class math_vector_expr
{
  public:
    math_vector_expr() = delete;

    math_vector_expr(LeftExpr l, RightExpr r) : 
      l_(std::forward<LeftExpr>(l)), 
      r_(std::forward<RightExpr>(r))
    {
    }

    // Prohibit copying...
    math_vector_expr(math_vector_expr const&) = delete;
    math_vector_expr& operator =(math_vector_expr const&) = delete;

    // Allow moves...
    math_vector_expr(math_vector_expr&&) = default;
    math_vector_expr& operator =(math_vector_expr&&) = default;

    template <typename RE>
    auto operator +(RE&& re) const ->
      math_vector_expr<
        math_vector_expr<LeftExpr,BinaryOp,RightExpr> const&,
        BinaryOp,
        decltype(std::forward<RE>(re))
      >
    {
      return 
        math_vector_expr<
          math_vector_expr<LeftExpr,BinaryOp,RightExpr> const&,
          BinaryOp,
          decltype(std::forward<RE>(re))
        >(*this, std::forward<RE>(re))
      ;
    }

    auto le() -> 
      typename std::add_lvalue_reference<LeftExpr>::type
      { return l_; }

    auto le() const ->
      typename std::add_lvalue_reference<
        typename std::add_const<LeftExpr>::type
      >::type
      { return l_; }

    auto re() -> 
      typename std::add_lvalue_reference<RightExpr>::type
      { return r_; }

    auto re() const -> 
      typename std::add_lvalue_reference<
        typename std::add_const<RightExpr>::type
      >::type
      { return r_; }

    auto operator [](std::size_t index) const ->
      decltype(
        BinaryOp::apply(this->le()[index], this->re()[index])
      )
    {
      return BinaryOp::apply(le()[index], re()[index]);
    }

  private:
    LeftExpr l_;
    RightExpr r_;
};

//===========================================================================

template <typename T>
struct plus_op
{
  static T apply(T const& a, T const& b)
  {
    return a + b;
  }

  static T apply(T&& a, T const& b)
  {
    a += b;
    return std::move(a);
  }

  static T apply(T const& a, T&& b)
  {
    b += a;
    return std::move(b);
  }

  static T apply(T&& a, T&& b)
  {
    a += b;
    return std::move(a);
  }
};

//===========================================================================

template <std::size_t N>
class math_vector
{
  using impl_type = std::array<long double, N>;

  public:
    math_vector()
    {
      using namespace std;
      fill(begin(v_), end(v_), impl_type{});
      std::cout << this << ": math_vector()" << endl;
    }

    math_vector(math_vector const& mv) noexcept
    {
      using namespace std;
      copy(begin(mv.v_), end(mv.v_), begin(v_));
      std::cout << this << ": math_vector(copy: " << &mv << ")" << endl;
    }

    math_vector(math_vector&& mv) noexcept
    {
      using namespace std;
      move(begin(mv.v_), end(mv.v_), begin(v_));
      std::cout << this << ": math_vector(move: " << &mv << ")" << endl;
    }

    math_vector(std::initializer_list<typename impl_type::value_type> l)
    {
      using namespace std;
      copy(begin(l), end(l), begin(v_));
      std::cout << this << ": math_vector(initlist)" << endl;
    }

    math_vector& operator =(math_vector const& mv) noexcept
    {
      using namespace std;
      copy(begin(mv.v_), end(mv.v_), begin(v_));
      std::cout << this << ": math_vector op =(copy: " << &mv << ")" << endl;
      return *this;
    }

    math_vector& operator =(math_vector&& mv) noexcept
    {
      using namespace std;
      move(begin(mv.v_), end(mv.v_), begin(v_));
      std::cout << this << ": math_vector op =(move: " << &mv << ")" << endl;
      return *this;
    }

    ~math_vector()
    {
      using namespace std;
      std::cout << this << ": ~math_vector()" << endl;
    }

    void swap(math_vector& mv)
    {
      using namespace std;
      for (std::size_t i = 0; i<N; ++i)
        swap(v_[i], mv[i]);
    }

    auto operator [](std::size_t index) const
      -> typename impl_type::value_type const&
    {
      return v_[index];
    }

    auto operator [](std::size_t index)
      -> typename impl_type::value_type&
    {
      return v_[index];
    }

    math_vector& operator +=(math_vector const& b)
    {
      for (std::size_t i = 0; i<N; ++i)
        v_[i] += b[i];
      return *this;
    }

  #ifndef DONT_USE_EXPR_TEMPL

    template <typename LE, typename Op, typename RE>
    math_vector(math_vector_expr<LE,Op,RE>&& mve)
    {
      for (std::size_t i = 0; i < N; ++i)
        v_[i] = mve[i];
      std::cout << this << ": math_vector(expr: " << &mve << ")" << std::endl;
    }

    template <typename RightExpr>
    math_vector& operator =(RightExpr&& re)
    {
      for (std::size_t i = 0; i<N; ++i)
        v_[i] = re[i];
      return *this;
    }

    template <typename RightExpr>
    math_vector& operator +=(RightExpr&& re)
    {
      for (std::size_t i = 0; i<N; ++i)
        v_[i] += re[i];
      return *this;
    }

    template <typename RightExpr>
    auto operator +(RightExpr&& re) const ->
      math_vector_expr<
        math_vector const&, 
        plus_op<typename impl_type::value_type>,
        decltype(std::forward<RightExpr>(re))
      >
    {
      return 
        math_vector_expr<
          math_vector const&, 
          plus_op<typename impl_type::value_type>, 
          decltype(std::forward<RightExpr>(re))
        >(
          *this, 
          std::forward<RightExpr>(re)
        )
      ;
    }

  #endif // #ifndef DONT_USE_EXPR_TEMPL

  private:
    impl_type v_;
};

//===========================================================================

template <std::size_t N>
inline void swap(math_vector<N>& a, math_vector<N>& b)
{
  a.swap(b);
}

//===========================================================================

#ifdef DONT_USE_EXPR_TEMPL

template <std::size_t N>
inline math_vector<N> operator +(
  math_vector<N> const& a, 
  math_vector<N> const& b
)
{
  math_vector<N> retval(a);
  retval += b;
  return retval;
}

template <std::size_t N>
inline math_vector<N> operator +(
  math_vector<N>&& a, 
  math_vector<N> const& b
)
{
  a += b;
  return std::move(a);
}

template <std::size_t N>
inline math_vector<N> operator +(
  math_vector<N> const& a, 
  math_vector<N>&& b
)
{
  b += a;
  return std::move(b);
}

template <std::size_t N>
inline math_vector<N> operator +(
  math_vector<N>&& a, 
  math_vector<N>&& b
)
{
  a += std::move(b);
  return std::move(a);
}

#endif // #ifdef DONT_USE_EXPR_TEMPL

//===========================================================================

template <std::size_t N>
std::ostream& operator <<(std::ostream& os, math_vector<N> const& mv)
{
  os << '(';
  for (std::size_t i = 0; i < N; ++i)
    os << mv[i] << ((i+1 != N) ? ',' : ')');
  return os;
}

//===========================================================================

int main()
{
  using namespace std;

  try
  {
    {
      cout << "CASE 1:\n";
      math_vector<3> a{1.0, 1.1, 1.2};
      math_vector<3> b{2.0, 2.1, 2.2};
      math_vector<3> c{3.0, 3.1, 3.2};
      math_vector<3> d{4.0, 4.1, 4.2};
      math_vector<3> result = a + b + c + d;
      cout << '[' << &result << "]: " << result << "\n";
    }
    cout << endl;
    {
      cout << "CASE 2:\n";
      math_vector<3> result =
        math_vector<3>{1.0, 1.1, 1.2} +
        math_vector<3>{2.0, 2.1, 2.2} +
        math_vector<3>{3.0, 3.1, 3.2} +
        math_vector<3>{4.0, 4.1, 4.2}
      ;
      cout << '[' << &result << "]: " << result << "\n";
    }
  }
  catch (...)
  {
    return 1;
  }
}

//===========================================================================
于 2012-08-04T22:33:17.070 に答える
6

これは、Paul Preney のコードの修正版です。私は電子メールとコメントで著者に通知しました。編集を書きましたが、資格のないレビュアーによって拒否されました。

元のコードのエラーは、math_vector_expr::operator+ の BinaryOp テンプレート パラメータが修正されていることです。

#include <array>
#include <algorithm>
#include <initializer_list>
#include <type_traits>
#include <iostream>

//#define DONT_USE_EXPR_TEMPL

//===========================================================================

template <std::size_t N> class math_vector;
template <typename T> struct plus_op;


template <
  typename LeftExpr,
  typename BinaryOp,
  typename RightExpr
>
class math_vector_expr
{
  public:
    typedef typename std::remove_reference<LeftExpr>::type::value_type value_type;

    math_vector_expr() = delete;

    math_vector_expr(LeftExpr l, RightExpr r) :
      l_(std::forward<LeftExpr>(l)),
      r_(std::forward<RightExpr>(r))
    {
    }

    // Prohibit copying...
    math_vector_expr(math_vector_expr const&) = delete;
    math_vector_expr& operator =(math_vector_expr const&) = delete;

    // Allow moves...
    math_vector_expr(math_vector_expr&&) = default;
    math_vector_expr& operator =(math_vector_expr&&) = default;

    template <typename RE>
    auto operator +(RE&& re) const ->
      math_vector_expr<
        math_vector_expr<LeftExpr,BinaryOp,RightExpr> const&,
        plus_op<value_type>,
        decltype(std::forward<RE>(re))
      >
    {
      return
        math_vector_expr<
          math_vector_expr<LeftExpr,BinaryOp,RightExpr> const&,
          plus_op<value_type>,
          decltype(std::forward<RE>(re))
        >(*this, std::forward<RE>(re))
      ;
    }

    auto le() ->
      typename std::add_lvalue_reference<LeftExpr>::type
      { return l_; }

    auto le() const ->
      typename std::add_lvalue_reference<
        typename std::add_const<LeftExpr>::type
      >::type
      { return l_; }

    auto re() ->
      typename std::add_lvalue_reference<RightExpr>::type
      { return r_; }

    auto re() const ->
      typename std::add_lvalue_reference<
        typename std::add_const<RightExpr>::type
      >::type
      { return r_; }

    auto operator [](std::size_t index) const ->
      value_type
    {
      return BinaryOp::apply(le()[index], re()[index]);
    }

  private:
    LeftExpr l_;
    RightExpr r_;
};

//===========================================================================

template <typename T>
struct plus_op
{
  static T apply(T const& a, T const& b)
  {
    return a + b;
  }

  static T apply(T&& a, T const& b)
  {
    a += b;
    return std::move(a);
  }

  static T apply(T const& a, T&& b)
  {
    b += a;
    return std::move(b);
  }

  static T apply(T&& a, T&& b)
  {
    a += b;
    return std::move(a);
  }
};

//===========================================================================

template <std::size_t N>
class math_vector
{
  using impl_type = std::array<long double, N>;

  public:
    typedef typename impl_type::value_type value_type;

    math_vector()
    {
      using namespace std;
      fill(begin(v_), end(v_), impl_type{});
      std::cout << this << ": math_vector()" << endl;
    }

    math_vector(math_vector const& mv) noexcept
    {
      using namespace std;
      copy(begin(mv.v_), end(mv.v_), begin(v_));
      std::cout << this << ": math_vector(copy: " << &mv << ")" << endl;
    }

    math_vector(math_vector&& mv) noexcept
    {
      using namespace std;
      move(begin(mv.v_), end(mv.v_), begin(v_));
      std::cout << this << ": math_vector(move: " << &mv << ")" << endl;
    }

    math_vector(std::initializer_list<value_type> l)
    {
      using namespace std;
      copy(begin(l), end(l), begin(v_));
      std::cout << this << ": math_vector(initlist)" << endl;
    }

    math_vector& operator =(math_vector const& mv) noexcept
    {
      using namespace std;
      copy(begin(mv.v_), end(mv.v_), begin(v_));
      std::cout << this << ": math_vector op =(copy: " << &mv << ")" << endl;
      return *this;
    }

    math_vector& operator =(math_vector&& mv) noexcept
    {
      using namespace std;
      move(begin(mv.v_), end(mv.v_), begin(v_));
      std::cout << this << ": math_vector op =(move: " << &mv << ")" << endl;
      return *this;
    }

    ~math_vector()
    {
      using namespace std;
      std::cout << this << ": ~math_vector()" << endl;
    }

    void swap(math_vector& mv)
    {
      using namespace std;
      for (std::size_t i = 0; i<N; ++i)
        swap(v_[i], mv[i]);
    }

    auto operator [](std::size_t index) const
      -> value_type const&
    {
      return v_[index];
    }

    auto operator [](std::size_t index)
      -> value_type&
    {
      return v_[index];
    }

    math_vector& operator +=(math_vector const& b)
    {
      for (std::size_t i = 0; i<N; ++i)
        v_[i] += b[i];
      return *this;
    }

  #ifndef DONT_USE_EXPR_TEMPL

    template <typename LE, typename Op, typename RE>
    math_vector(math_vector_expr<LE,Op,RE>&& mve)
    {
      for (std::size_t i = 0; i < N; ++i)
        v_[i] = mve[i];
      std::cout << this << ": math_vector(expr: " << &mve << ")" << std::endl;
    }

    template <typename RightExpr>
    math_vector& operator =(RightExpr&& re)
    {
      for (std::size_t i = 0; i<N; ++i)
        v_[i] = re[i];
      return *this;
    }

    template <typename RightExpr>
    math_vector& operator +=(RightExpr&& re)
    {
      for (std::size_t i = 0; i<N; ++i)
        v_[i] += re[i];
      return *this;
    }

    template <typename RightExpr>
    auto operator +(RightExpr&& re) const ->
      math_vector_expr<
        math_vector const&,
        plus_op<value_type>,
        decltype(std::forward<RightExpr>(re))
      >
    {
      return
        math_vector_expr<
          math_vector const&,
          plus_op<value_type>,
          decltype(std::forward<RightExpr>(re))
        >(
          *this,
          std::forward<RightExpr>(re)
        )
      ;
    }

  #endif // #ifndef DONT_USE_EXPR_TEMPL

  private:
    impl_type v_;
};

//===========================================================================

template <std::size_t N>
inline void swap(math_vector<N>& a, math_vector<N>& b)
{
  a.swap(b);
}

//===========================================================================

#ifdef DONT_USE_EXPR_TEMPL

template <std::size_t N>
inline math_vector<N> operator +(
  math_vector<N> const& a,
  math_vector<N> const& b
)
{
  math_vector<N> retval(a);
  retval += b;
  return retval;
}

template <std::size_t N>
inline math_vector<N> operator +(
  math_vector<N>&& a,
  math_vector<N> const& b
)
{
  a += b;
  return std::move(a);
}

template <std::size_t N>
inline math_vector<N> operator +(
  math_vector<N> const& a,
  math_vector<N>&& b
)
{
  b += a;
  return std::move(b);
}

template <std::size_t N>
inline math_vector<N> operator +(
  math_vector<N>&& a,
  math_vector<N>&& b
)
{
  a += std::move(b);
  return std::move(a);
}

#endif // #ifdef DONT_USE_EXPR_TEMPL

//===========================================================================

template <std::size_t N>
std::ostream& operator <<(std::ostream& os, math_vector<N> const& mv)
{
  os << '(';
  for (std::size_t i = 0; i < N; ++i)
    os << mv[i] << ((i+1 != N) ? ',' : ')');
  return os;
}

//===========================================================================

int main()
{
  using namespace std;

  try
  {
    {
      cout << "CASE 1:\n";
      math_vector<3> a{1.0, 1.1, 1.2};
      math_vector<3> b{2.0, 2.1, 2.2};
      math_vector<3> c{3.0, 3.1, 3.2};
      math_vector<3> d{4.0, 4.1, 4.2};
      math_vector<3> result = a + b + c + d;
      cout << '[' << &result << "]: " << result << "\n";
    }
    cout << endl;
    {
      cout << "CASE 2:\n";
      math_vector<3> result =
        math_vector<3>{1.0, 1.1, 1.2} +
        math_vector<3>{2.0, 2.1, 2.2} +
        math_vector<3>{3.0, 3.1, 3.2} +
        math_vector<3>{4.0, 4.1, 4.2}
      ;
      cout << '[' << &result << "]: " << result << "\n";
    }
  }
  catch (...)
  {
    return 1;
  }
}

//===========================================================================
于 2013-10-18T10:13:14.233 に答える