私がこのMathematicaコードを持っていると仮定します。その出力、実数は入力、たとえばx、y、zに依存します。コードに基づいてx、y、zで実数値関数を作成するにはどうすればよいですか?
コードがx、y、z間の単純な関係を記述している場合、この関数を直接定義できます。ここでのポイントは、与えられたコードが非常に複雑なブロック(またはモジュール)であるということです。
たとえば、コードが単純にx、y、zを合計する場合、単純に次のように定義します。
f[x_,y_,z_]=x+y+z
以下のような非常に複雑な例がある場合はどうなりますか?
s0[a_, b_, x_] :=
{1, 0, (a + b) x + (1 - a - b)}
s1[a_, b_, c_, d_, p_, q_, n_, x_] :=
Which[0 <= x <= c, {2, n - 1, x/c*q + p},
c <= x <= c + d, {2, n, (x - c)/d*p},
c + d <= x <= 1, {1, n + 1, (x - (c + d))/(1 - c - d)*(1 - a - b)}]
s2[s_, t_, c_, d_, p_, q_, n_, x_] :=
Which[0 <= x <= 1 - s - t, {2, n - 1,
x/(1 - s - t)*(1 - p - q) + p + q},
1 - s - t <= x <= 1 - s, {3,
n - 1, (x - (1 - s - t))/t*(1 - c - d) + c + d},
1 - s <= x <= 1, {3, n, (x - (1 - s))/s*d + c}]
s3[c_, a_, b_, s_, t_, n_, x_] :=
Which[0 <= x <= 1 - a - b, {4, n - 1, x/(1 - a - b)*t + 1 - s - t},
1 - a - b <= x <= 1 - a, {4, n, (x - (1 - a - b))/b*(1 - s - t)},
1 - a <= x <= 1, {3, n + 1, (x - (1 - a))/a*c}]
s4[p_, q_, s_, a_, b_, n_, x_] :=
Which[0 <= x <= p, {4, n - 1, x/p*s + 1 - s},
p <= x <= p + q, {5, n - 1, (x - p)/q*a/(a + b) + b/(a + b)},
p + q <= x <= 1, {5, n, (x - (p + q))/(1 - p - q)*b/(a + b)}]
F[{k_, n_, x_}] :=
Which[k == 0, s0[a, b, x],
k == 1, s1[a, b, c, d, p, q, n, x],
k == 2, s2[s, t, c, d, p, q, n, x],
k == 3, s3[c, a, b, s, t, n, x],
k == 4, s4[p, q, s, a, b, n, x]]
G[x_] := NestWhile[F, {0, 0, x}, Function[e, Extract[e, {1}] != 5]]
H[x_] := Extract[G[x], {2}] + Extract[G[x], {3}]
H[0]
上記のコードを実行するには、リストを指定する必要があります
{a,b,c,d,p,q,s,t}
そして、出力は実数です。これらの実数を吐き出す関数をa、b、c、d、p、q、s、tでどのように定義しますか?