6

C++ で粒子群最適化アルゴリズムのグローバル バージョンを作成しました。以前に書いた MATLAB PSO コードとまったく同じように記述しようとしましたが、このコードは異なる最悪の結果を生成します。MATLAB コードは次のとおりです。

clear all;

numofdims = 30;
numofparticles = 50;
c1 = 2;
c2 = 2;
numofiterations = 1000;
V = zeros(50, 30);
initialpop = V;
Vmin = zeros(30, 1);
Vmax = Vmin;
Xmax = ones(30, 1) * 100;
Xmin = -Xmax;
pbestfits = zeros(50, 1);
worsts = zeros(50, 1);
bests = zeros(50, 1);
meanfits = zeros(50, 1);
pbests = zeros(50, 30);

initialpop = Xmin + (Xmax - Xmin) .* rand(numofparticles, numofdims);

X = initialpop;
fitnesses = testfunc1(X);
[minfit, minfitidx] = min(fitnesses);
gbestfit = minfit;
gbest = X(minfitidx, :);

for i = 1:numofdims
    Vmax(i) = 0.2 * (Xmax(i) - Xmin(i));
    Vmin(i) = -Vmax(i);
end

for t = 1:1000
    w = 0.9 - 0.7 * (t / numofiterations);

    for i = 1:numofparticles
        if(fitnesses(i) < pbestfits(i))
            pbestfits(i) = fitnesses(i);
            pbests(i, :) =  X(i, :);
        end
    end
    for i = 1:numofparticles
        for j = 1:numofdims
            V(i, j) = min(max((w * V(i, j) + rand * c1 * (pbests(i, j) - X(i, j))...
                + rand * c2 * (gbest(j) - X(i, j))), Vmin(j)), Vmax(j));
            X(i, j) = min(max((X(i, j) + V(i, j)), Xmin(j)), Xmax(j));
        end
    end

    fitnesses = testfunc1(X);
    [minfit, minfitidx] = min(fitnesses);
    if(minfit < gbestfit)
        gbestfit = minfit;
        gbest = X(minfitidx, :);
    end

    worsts(t) = max(fitnesses);
    bests(t) = gbestfit;
    meanfits(t) = mean(fitnesses);
end

ここで、testfunc1 は次のとおりです。

function [out] = testfunc1(R)
    out = sum(R .^ 2, 2);
end

C++ コードは次のとおりです。

#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <ctime>

#define rand_01 ((float)rand() / (float)RAND_MAX)

const int numofdims = 30;
const int numofparticles = 50;

using namespace std;

void fitnessfunc(float X[numofparticles][numofdims], float fitnesses[numofparticles])
{
    memset(fitnesses, 0, sizeof (float) * numofparticles);
    for(int i = 0; i < numofparticles; i++)
    {
        for(int j = 0; j < numofdims; j++)
        {
            fitnesses[i] += (pow(X[i][j], 2));
        }
    }
}

float mean(float inputval[], int vallength)
{
    int addvalue = 0;
    for(int i = 0; i < vallength; i++)
    {
        addvalue += inputval[i];
    }
    return (float)(addvalue / vallength);
}

void PSO(int numofiterations, float c1, float c2,
              float Xmin[numofdims], float Xmax[numofdims], float initialpop[numofparticles][numofdims],
              float worsts[], float meanfits[], float bests[], float *gbestfit, float gbest[numofdims])
{
    float V[numofparticles][numofdims] = {0};
    float X[numofparticles][numofdims];
    float Vmax[numofdims];
    float Vmin[numofdims];
    float pbests[numofparticles][numofdims];
    float pbestfits[numofparticles];
    float fitnesses[numofparticles];
    float w;
    float minfit;
    int   minfitidx;

    memcpy(X, initialpop, sizeof(float) * numofparticles * numofdims);
    fitnessfunc(X, fitnesses);
    minfit = *min_element(fitnesses, fitnesses + numofparticles);
    minfitidx = min_element(fitnesses, fitnesses + numofparticles) - fitnesses;
    *gbestfit = minfit;
    memcpy(gbest, X[minfitidx], sizeof(float) * numofdims);

    for(int i = 0; i < numofdims; i++)
    {
        Vmax[i] = 0.2 * (Xmax[i] - Xmin[i]);
        Vmin[i] = -Vmax[i];
    }

    for(int t = 0; t < 1000; t++)
    {
        w = 0.9 - 0.7 * (float) (t / numofiterations);

        for(int i = 0; i < numofparticles; i++)
        {
            if(fitnesses[i] < pbestfits[i])
            {
                pbestfits[i] = fitnesses[i];
                memcpy(pbests[i], X[i], sizeof(float) * numofdims);
            }
        }
        for(int i = 0; i < numofparticles; i++)
        {
            for(int j = 0; j < numofdims; j++)
            {
                V[i][j] = min(max((w * V[i][j] + rand_01 * c1 * (pbests[i][j] - X[i][j])
                                   + rand_01 * c2 * (gbest[j] - X[i][j])), Vmin[j]), Vmax[j]);
                X[i][j] = min(max((X[i][j] + V[i][j]), Xmin[j]), Xmax[j]);
            }
        }

        fitnessfunc(X, fitnesses);
        minfit = *min_element(fitnesses, fitnesses + numofparticles);
        minfitidx = min_element(fitnesses, fitnesses + numofparticles) - fitnesses;
        if(minfit < *gbestfit)
        {
            *gbestfit = minfit;
            memcpy(gbest, X[minfitidx], sizeof(float) * numofdims);
        }

        worsts[t] = *max_element(fitnesses, fitnesses + numofparticles);
        bests[t] = *gbestfit;
        meanfits[t] = mean(fitnesses, numofparticles);
    }


}

int main()
{
    time_t t;
    srand((unsigned) time(&t));

    float xmin[30], xmax[30];
    float initpop[50][30];
    float worsts[1000], bests[1000];
    float meanfits[1000];
    float gbestfit;
    float gbest[30];
    for(int i = 0; i < 30; i++)
    {
        xmax[i] = 100;
        xmin[i] = -100;
    }
    for(int i = 0; i < 50; i++)
        for(int j = 0; j < 30; j++)
        {
            initpop[i][j] = rand() % (100 + 100 + 1) - 100;
        }

    PSO(1000, 2, 2, xmin, xmax, initpop, worsts, meanfits, bests, &gbestfit, gbest);

    cout<<"fitness: "<<gbestfit<<endl;
    return 0;
}

2 つのコードを何度もデバッグしましたが、答えが異なる原因となる違いを見つけることができません。それは私を夢中にさせています!助けてください。

アップデート:

関数meanは何らかの情報を報告するためにのみ使用され、最適化手順では使用されないことを考慮してください。

4

2 に答える 2

10

次の行に整数除算があります。 w = 0.9 - 0.7 * (float) (t / numofiterations); 反復ごとにwは0.2になります。これを次のように変更します。 w = 0.9 - 0.7 * t / numofiterations;

最初の乗算は自動的にtを2倍にプロモートし、次に除算はnumof回の反復を2倍にプロモートする必要があります。

括弧は、最初に実行されることを意味します。したがって、2つの整数が除算に含まれるため、昇格されません。

于 2012-08-07T20:21:43.573 に答える
2

これは機能の間違いである可能性がありますmean

return (float)(addvalue / vallength);

これは整数除算であるため、結果は切り捨てられてから、 floatキャストされます。これがあなたが望むものである可能性は低いです。

于 2012-08-07T19:24:05.353 に答える