現在、バックプロパゲーション アルゴリズムに問題があります。私はそれを実装して、顔の方向(左、右、下、まっすぐ)を認識するために使用しようとしています。基本的に、N 個の画像があり、ピクセルを読み取り、その値 (0 から 255) を 0.0 から 1.0 の値に変更します。すべての画像は 32*30 です。960 ニューロンの入力層、3 ニューロンの隠れ層、4 ニューロンの出力層があります。たとえば、出力 <0.1,0.9,0.1,0.1> は、人が右を見ていることを意味します。私は疑似コードに従いました。ただし、正しく機能しません。正しい重みが計算されないため、トレーニングとテストの例を処理できません。コードの一部を次に示します。
// main function - it runs the algorithm
private void runBackpropagationAlgorithm() {
for (int i = 0; i < 900; ++i) {
for (ImageUnit iu : images) {
double [] error = calcOutputError(iu.getRatioMatrix(), iu.getClassification());
changeHiddenUnitsOutWeights(error);
error = calcHiddenError(error);
changeHiddenUnitsInWeights(error,iu.getRatioMatrix());
}
}
}
// it creates the neural network
private void createNeuroneNetwork() {
Random generator = new Random();
for (int i = 0; i < inHiddenUnitsWeights.length; ++i) {
for (int j = 0; j < hiddenUnits; ++j) {
inHiddenUnitsWeights[i][j] = generator.nextDouble();
}
}
for (int i = 0; i < hiddenUnits; ++i) {
for (int j = 0; j < 4; ++j) {
outHddenUnitsWeights[i][j] = generator.nextDouble();
}
}
}
// Calculates the error in the network. It runs through the whole network.
private double [] calcOutputError(double[][] input, double [] expectedOutput) {
int currentEdge = 0;
Arrays.fill(hiddenUnitNodeValue, 0.0);
for (int i = 0; i < input.length; ++i) {
for (int j = 0; j < input[0].length; ++j) {
for (int k = 0; k < hiddenUnits; ++k) {
hiddenUnitNodeValue[k] += input[i][j] * inHiddenUnitsWeights[currentEdge][k];
}
++currentEdge;
}
}
double[] out = new double[4];
for (int j = 0; j < 4; ++j) {
for (int i = 0; i < hiddenUnits; ++i) {
out[j] += outHddenUnitsWeights[i][j] * hiddenUnitNodeValue[i];
}
}
double [] error = new double [4];
Arrays.fill(error, 4);
for (int i = 0; i < 4; ++i) {
error[i] = ((expectedOutput[i] - out[i])*(1.0-out[i])*out[i]);
//System.out.println((expectedOutput[i] - out[i]) + " " + expectedOutput[i] + " " + out[i]);
}
return error;
}
// Changes the weights of the outgoing edges of the hidden neurons
private void changeHiddenUnitsOutWeights(double [] error) {
for (int i = 0; i < hiddenUnits; ++i) {
for (int j = 0; j < 4; ++j) {
outHddenUnitsWeights[i][j] += learningRate*error[j]*hiddenUnitNodeValue[i];
}
}
}
// goes back to the hidden units to calculate their error.
private double [] calcHiddenError(double [] outputError) {
double [] error = new double[hiddenUnits];
for (int i = 0; i < hiddenUnits; ++i) {
double currentHiddenUnitErrorSum = 0.0;
for (int j = 0; j < 4; ++j) {
currentHiddenUnitErrorSum += outputError[j]*outHddenUnitsWeights[i][j];
}
error[i] = hiddenUnitNodeValue[i] * (1.0 - hiddenUnitNodeValue[i]) * currentHiddenUnitErrorSum;
}
return error;
}
// changes the weights of the incomming edges to the hidden neurons. input is the matrix of ratios
private void changeHiddenUnitsInWeights(double [] error, double[][] input) {
int currentEdge = 0;
for (int i = 0; i < input.length; ++i) {
for (int j = 0; j < input[0].length; ++j) {
for (int k = 0; k < hiddenUnits; ++k) {
inHiddenUnitsWeights[currentEdge][k] += learningRate*error[k]*input[i][j];
}
++currentEdge;
}
}
}
アルゴリズムが機能するにつれて、重みがどんどん大きくなり、最終的に無限大 (NaN 値) に近づきます。コードを確認しました。残念ながら、私は自分の問題を解決できませんでした。私を助けようとする人には、心から感謝します。