3つの可能な答えがあります。
あなたの質問のSQLフィドルはここにあります:http://sqlfiddle.com/#!3/7c7a0/3/0
私の答えのSQLフィドルはここにあります:http://sqlfiddle.com/#!3/5d257/1
警告:
- Query Analyzer だけでは十分ではありません。クエリ プランが元のクエリよりも高価であるため、多くの回答が拒否されていることに気付きました。アナライザーは単なるガイドです。実際のデータ セット、ハードウェア、およびユース ケースによっては、高価なクエリは、安価なクエリよりも速く結果を返すことができます。自分の環境でテストする必要があります。
- クエリ アナライザーは効果がありません。クエリから「最もコストのかかるステップ」を削除する方法を見つけたとしても、多くの場合、クエリに違いはありません。
- クエリの変更だけでスキーマ/設計の問題が軽減されることはめったにありません- 一部の回答は、トリガーや追加のテーブルなどのスキーマ レベルの変更を伴うため拒否されました。最適化に抵抗する複雑なクエリは、問題が基礎となる設計または私の期待にあることを示す強力な兆候です。気に入らないかもしれませんが、クエリ レベルでは問題を解決できないことを受け入れる必要があるかもしれません。
- インデックス付きビューにrow_number()/partitition句を含めることはできません-オブジェクトテーブルの6つのコピーを作成して自己結合の問題を回避するだけでは、提案したインデックス付きビューを作成するには不十分です。この sqlfiddleで試しました。最後の "create index" ステートメントのコメントを外すと、ビューに "ランキングまたは集計ウィンドウ関数が含まれている" ため、エラーが発生します。
有効な回答:
- row_number() の代わりに左結合- 左結合を使用するクエリを使用して、ツリーの下位でオーバーライドされた結果を除外できます。このクエリから最終的な "order by" を削除すると、実際にあなたを悩ませてきた並べ替えが削除されます! このクエリの実行プランは元のクエリよりもコストがかかりますが、上記の免責事項 #1 を参照してください。
- クエリの一部のインデックス付きビュー- 本格的なクエリ マジック (この手法に基づく) を使用して、クエリの一部のインデックス付きビューを作成しました。このビューは、元の質問クエリまたは回答 #1 を強化するために使用できます。
- Actualize into a well indexed table - 他の誰かがこの回答を提案しましたが、彼らはそれをうまく説明していない可能性があります。結果セットが非常に大きい場合や、ソース テーブルを頻繁に更新する場合を除き、クエリの結果を実現し、トリガーを使用してそれらを最新の状態に保つことは、この種の問題を回避するための最適な方法です。クエリのビューを作成したら、このオプションを簡単にテストできます。回答 #2 を再利用してトリガーを高速化し、時間の経過とともにさらに改善することができます。(テーブルの6 つのコピーを作成することについて話しているので、最初にこれを試してください。これにより、関心のある選択のパフォーマンスが可能な限り向上することが保証されます。)
sqlfiddle からの私の回答のスキーマ部分は次のとおりです。
Create Table Objects
(
Id int not null identity primary key,
LeftIndex int not null default 0,
RightIndex int not null default 0
)
alter table Objects add ParentId int null references Objects
CREATE TABLE TP
(
Object1 int not null references Objects,
Object2 int not null references Objects,
Object3 int not null references Objects,
Property varchar(20) not null,
Value varchar(50) not null
)
insert into Objects(LeftIndex, RightIndex) values(1, 10)
insert into Objects(ParentId, LeftIndex, RightIndex) values(1, 2, 5)
insert into Objects(ParentId, LeftIndex, RightIndex) values(1, 6, 9)
insert into Objects(ParentId, LeftIndex, RightIndex) values(2, 3, 4)
insert into Objects(ParentId, LeftIndex, RightIndex) values(3, 7, 8)
insert into TP(Object1, Object2, Object3, Property, Value) values(1,2,3, 'P1', 'abc')
insert into TP(Object1, Object2, Object3, Property, Value) values(1,2,3, 'P2', 'xyz')
insert into TP(Object1, Object2, Object3, Property, Value) values(1,3,4, 'P1', '123')
insert into TP(Object1, Object2, Object3, Property, Value) values(2,4,5, 'P1', '098')
create index ix_LeftIndex on Objects(LeftIndex)
create index ix_RightIndex on Objects(RightIndex)
create index ix_Objects on TP(Property, Value, Object1, Object2, Object3)
create index ix_Prop on TP(Property)
GO
---------- QUESTION ADDITIONAL SCHEMA --------
CREATE VIEW TPResultView AS
Select O1, O2, O3, Property, Value
FROM
(
select Children1.Id as O1, Children2.Id as O2, Children3.Id as O3, tp.Property, tp.Value,
row_number() over(
partition by Children1.Id, Children2.Id, Children3.Id, tp.Property
order by Objects1.LeftIndex desc, Objects2.LeftIndex desc, Objects3.LeftIndex desc
)
as Idx
from tp
-- Select corresponding objects of the triple
inner join Objects as Objects1 on Objects1.Id = tp.Object1
inner join Objects as Objects2 on Objects2.Id = tp.Object2
inner join Objects as Objects3 on Objects3.Id = tp.Object3
-- Then add all possible children of all those objects
inner join Objects as Children1 on Children1.LeftIndex between Objects1.LeftIndex and Objects1.RightIndex
inner join Objects as Children2 on Children2.LeftIndex between Objects2.LeftIndex and Objects2.RightIndex
inner join Objects as Children3 on Children3.LeftIndex between Objects3.LeftIndex and Objects3.RightIndex
) as x
WHERE idx = 1
GO
---------- ANSWER 1 SCHEMA --------
CREATE VIEW TPIntermediate AS
select tp.Property, tp.Value
, Children1.Id as O1, Children2.Id as O2, Children3.Id as O3
, Objects1.LeftIndex as PL1, Objects2.LeftIndex as PL2, Objects3.LeftIndex as PL3
, Children1.LeftIndex as CL1, Children2.LeftIndex as CL2, Children3.LeftIndex as CL3
from tp
-- Select corresponding objects of the triple
inner join Objects as Objects1 on Objects1.Id = tp.Object1
inner join Objects as Objects2 on Objects2.Id = tp.Object2
inner join Objects as Objects3 on Objects3.Id = tp.Object3
-- Then add all possible children of all those objects
inner join Objects as Children1 WITH (INDEX(ix_LeftIndex)) on Children1.LeftIndex between Objects1.LeftIndex and Objects1.RightIndex
inner join Objects as Children2 WITH (INDEX(ix_LeftIndex)) on Children2.LeftIndex between Objects2.LeftIndex and Objects2.RightIndex
inner join Objects as Children3 WITH (INDEX(ix_LeftIndex)) on Children3.LeftIndex between Objects3.LeftIndex and Objects3.RightIndex
GO
---------- ANSWER 2 SCHEMA --------
-- Partial calculation using an indexed view
-- Circumvented the self-join limitation using a black magic technique, based on
-- http://jmkehayias.blogspot.com/2008/12/creating-indexed-view-with-self-join.html
CREATE TABLE dbo.multiplier (i INT PRIMARY KEY)
INSERT INTO dbo.multiplier VALUES (1)
INSERT INTO dbo.multiplier VALUES (2)
INSERT INTO dbo.multiplier VALUES (3)
GO
CREATE VIEW TPIndexed
WITH SCHEMABINDING
AS
SELECT tp.Object1, tp.object2, tp.object3, tp.property, tp.value,
SUM(ISNULL(CASE M.i WHEN 1 THEN Objects.LeftIndex ELSE NULL END, 0)) as PL1,
SUM(ISNULL(CASE M.i WHEN 2 THEN Objects.LeftIndex ELSE NULL END, 0)) as PL2,
SUM(ISNULL(CASE M.i WHEN 3 THEN Objects.LeftIndex ELSE NULL END, 0)) as PL3,
SUM(ISNULL(CASE M.i WHEN 1 THEN Objects.RightIndex ELSE NULL END, 0)) as PR1,
SUM(ISNULL(CASE M.i WHEN 2 THEN Objects.RightIndex ELSE NULL END, 0)) as PR2,
SUM(ISNULL(CASE M.i WHEN 3 THEN Objects.RightIndex ELSE NULL END, 0)) as PR3,
COUNT_BIG(*) as ID
FROM dbo.tp
cross join dbo.multiplier M
inner join dbo.Objects
on (M.i = 1 AND Objects.Id = tp.Object1)
or (M.i = 2 AND Objects.Id = tp.Object2)
or (M.i = 3 AND Objects.Id = tp.Object3)
GROUP BY tp.Object1, tp.object2, tp.object3, tp.property, tp.value
GO
-- This index is mostly useless but required
create UNIQUE CLUSTERED index pk_TPIndexed on dbo.TPIndexed(property, value, object1, object2, object3)
-- Once we have the clustered index, we can create a nonclustered that actually addresses our needs
create NONCLUSTERED index ix_TPIndexed on dbo.TPIndexed(property, value, PL1, PL2, PL3, PR1, PR2, PR3)
GO
-- NOTE: this View is not indexed, but is uses the indexed view
CREATE VIEW TPIndexedResultView AS
Select O1, O2, O3, Property, Value
FROM
(
select Children1.Id as O1, Children2.Id as O2, Children3.Id as O3, tp.Property, tp.Value,
row_number() over(
partition by tp.Property, Children1.Id, Children2.Id, Children3.Id
order by tp.Property, Tp.PL1 desc, Tp.PL2 desc, Tp.PL3 desc
)
as Idx
from TPIndexed as TP WITH (NOEXPAND)
-- Then add all possible children of all those objects
inner join Objects as Children1 WITH (INDEX(ix_LeftIndex)) on Children1.LeftIndex between TP.PL1 and TP.PR1
inner join Objects as Children2 WITH (INDEX(ix_LeftIndex)) on Children2.LeftIndex between TP.PL2 and TP.PR2
inner join Objects as Children3 WITH (INDEX(ix_LeftIndex)) on Children3.LeftIndex between TP.PL3 and TP.PR3
) as x
WHERE idx = 1
GO
-- NOTE: this View is not indexed, but is uses the indexed view
CREATE VIEW TPIndexedIntermediate AS
select tp.Property, tp.Value
, Children1.Id as O1, Children2.Id as O2, Children3.Id as O3
, PL1, PL2, PL3
, Children1.LeftIndex as CL1, Children2.LeftIndex as CL2, Children3.LeftIndex as CL3
from TPIndexed as TP WITH (NOEXPAND)
-- Then add all possible children of all those objects
inner join Objects as Children1 WITH (INDEX(ix_LeftIndex)) on Children1.LeftIndex between TP.PL1 and TP.PR1
inner join Objects as Children2 WITH (INDEX(ix_LeftIndex)) on Children2.LeftIndex between TP.PL2 and TP.PR2
inner join Objects as Children3 WITH (INDEX(ix_LeftIndex)) on Children3.LeftIndex between TP.PL3 and TP.PR3
GO
---------- ANSWER 3 SCHEMA --------
-- You're talking about making six copies of the TP table
-- If you're going to go that far, you might as well, go the trigger route
-- The performance profile is much the same - slower on insert, faster on read
-- And instead of still recalculating on every read, you'll be recalculating
-- only when the data changes.
CREATE TABLE TPResult
(
Object1 int not null references Objects,
Object2 int not null references Objects,
Object3 int not null references Objects,
Property varchar(20) not null,
Value varchar(50) not null
)
GO
create UNIQUE index ix_Result on TPResult(Property, Value, Object1, Object2, Object3)
--You'll have to imagine this trigger, sql fiddle doesn't want to do it
--CREATE TRIGGER tr_TP
--ON TP
-- FOR INSERT, UPDATE, DELETE
--AS
-- DELETE FROM TPResult
-- -- For this example we'll just insert into the table once
INSERT INTO TPResult
SELECT O1, O2, O3, Property, Value
FROM TPResultView
sqlfiddle からの私の回答の一部をクエリします。
-------- QUESTION QUERY ----------
-- Original query, modified to use the view I added
SELECT O1, O2, O3, Property, Value
FROM TPResultView
WHERE property = 'P1' AND value = 'abc'
-- Your assertion is that this order by is the most expensive part.
-- Sometimes converting queries into views allows the server to
-- Optimize them better over time.
-- NOTE: removing this order by has no effect on this query.
-- ORDER BY O1, O2, O3
GO
-------- ANSWER 1 QUERY ----------
-- A different way to get the same result.
-- Query optimizer says this is more expensive, but I've seen cases where
-- it says a query is more expensive but it returns results faster.
SELECT O1, O2, O3, Property, Value
FROM (
SELECT A.O1, A.O2, A.O3, A.Property, A.Value
FROM TPIntermediate A
LEFT JOIN TPIntermediate B ON A.O1 = B.O1
AND A.O2 = B.O2
AND A.O3 = B.O3
AND A.Property = B.Property
AND
(
-- Find any rows with Parent LeftIndex triplet that is greater than this one
(A.PL1 < B.PL1
AND A.PL2 < B.PL2
AND A.PL3 < B.PL3)
OR
-- Find any rows with LeftIndex triplet that is greater than this one
(A.CL1 < B.CL1
AND A.CL2 < B.CL2
AND A.CL3 < B.CL3)
)
-- If this row has any rows that match the previous two cases, exclude it
WHERE B.O1 IS NULL ) AS x
WHERE property = 'P1' AND value = 'abc'
-- NOTE: Removing this order _DOES_ reduce query cost removing the "sort" action
-- that has been the focus of your question.
-- Howeer, it wasn't clear from your question whether this order by was required.
--ORDER BY O1, O2, O3
GO
-------- ANSWER 2 QUERIES ----------
-- Same as above but using an indexed view to partially calculate results
SELECT O1, O2, O3, Property, Value
FROM TPIndexedResultView
WHERE property = 'P1' AND value = 'abc'
-- Your assertion is that this order by is the most expensive part.
-- Sometimes converting queries into views allows the server to
-- Optimize them better over time.
-- NOTE: removing this order by has no effect on this query.
--ORDER BY O1, O2, O3
GO
SELECT O1, O2, O3, Property, Value
FROM (
SELECT A.O1, A.O2, A.O3, A.Property, A.Value
FROM TPIndexedIntermediate A
LEFT JOIN TPIndexedIntermediate B ON A.O1 = B.O1
AND A.O2 = B.O2
AND A.O3 = B.O3
AND A.Property = B.Property
AND
(
-- Find any rows with Parent LeftIndex triplet that is greater than this one
(A.PL1 < B.PL1
AND A.PL2 < B.PL2
AND A.PL3 < B.PL3)
OR
-- Find any rows with LeftIndex triplet that is greater than this one
(A.CL1 < B.CL1
AND A.CL2 < B.CL2
AND A.CL3 < B.CL3)
)
-- If this row has any rows that match the previous two cases, exclude it
WHERE B.O1 IS NULL ) AS x
WHERE property = 'P1' AND value = 'abc'
-- NOTE: Removing this order _DOES_ reduce query cost removing the "sort" action
-- that has been the focus of your question.
-- Howeer, it wasn't clear from your question whether this order by was required.
--ORDER BY O1, O2, O3
GO
-------- ANSWER 3 QUERY ----------
-- Returning results from a pre-calculated table is fast and easy
-- Unless your are doing many more inserts than reads, or your result
-- set is very large, this is a fine way to compensate for a poor design
-- in one area of your database.
SELECT Object1 as O1, Object2 as O2, Object3 as O3, Property, Value
FROM TPResult
WHERE property = 'P1' AND value = 'abc'
ORDER BY O1, O2, O3