多くの時間を費やした後、Objective-C++ で完全に機能するソリューションを手に入れたと確信しています。機能の一部:
実装に関するいくつかのマイナーな短所:
オブジェクトには所有権指定子が必要です (C++ 参照の制限: Reference to non-const type 'id' with no explicit ownership
)。変数の型に__strong
、__weak
、またはを追加することで簡単に修正できます__autoreleasing
実装が読みにくい。C++ テンプレートと Objective-C が調和して動作することに大きく依存しているため、「1 つのこと」を変更してそれが機能することを期待することは困難です。実装に広範なコメントを追加したので、これで負担が軽減されることを願っています。
メソッドの入れ替わりは、これを大きく混乱させる可能性があります。最大の問題ではありませんが、メソッドの入れ替わりをいじり始めると、予期しない結果が得られても驚かないでください。
C++ オブジェクト内では使用できません。残念ながら、C++ は Objective-C のようにランタイム属性をサポートしていないため、変数が最終的にクリーンアップされることに依存することはできません。このため、C++ オブジェクト内では OBJC_IVAR を使用できません。ただし、そのための実装を見ることに興味があります。
#line
これを大幅に台無しにする可能性があるため、使用しないでください。
バージョン履歴
- 1.0: 初期リリース
- 1.1:
OBJC_IVAR_NAME
プリプロセッサのみに依存するように更新。その結果、使用できません__func__
。
したがって、これ以上苦労することなく、コードは次のとおりです。
OBJC_IVAR.hpp
//
// OBJC_IVAR.h
// TestProj
//
// Created by Richard Ross on 8/17/12.
// Copyright (c) 2012 Ultimate Computer Services, Inc. All rights reserved.
//
#ifndef OBJC_IVAR_HPP
#define OBJC_IVAR_HPP
#import <Foundation/Foundation.h>
#import <objc/runtime.h>
#import "NSValue+CppObject.h"
// Argument counting algorithm. Not too complex
#define __NARG(_1, _2, _3, _4, _5, VAL, ...) VAL
#define NARG(...) __NARG(__VA_ARGS__, 5, 4, 3, 2, 1, 0)
// Different implementations based on number of parameters passed in
#define __OBJC_IVAR(N, ...) _OBJC_IVAR_ ## N (__VA_ARGS__)
#define _OBJC_IVAR(N, ...) __OBJC_IVAR(N, __VA_ARGS__)
// Usage: OBJC_IVAR(Type (optional), Name (required), Default (optional))
#define OBJC_IVAR(...) _OBJC_IVAR(NARG(__VA_ARGS__), __VA_ARGS__)
// create a unique name. we use '__COUNTER__' here to support scoping on the same line, for compressed source code
#define __OBJC_IVAR_STRINGIFY_NAME(file, line, name, counter) @file ":" #line " " #name ":" #counter
#define _OBJC_IVAR_NAME(file, line, name, counter) __OBJC_IVAR_STRINGIFY_NAME(file, line, name, counter)
#define OBJC_IVAR_NAME(name) _OBJC_IVAR_NAME(__FILE__, __LINE__, name, __COUNTER__)
// old style creation. advantage: uses __func__ to determine calling function
// #define OBJC_IVAR_NAME(Name) [NSString stringWithFormat:@"%s:%i %s:%s:%i", __FILE__, __LINE__, __func__, #Name, __COUNTER__]
// implemenations for each of the overloads
#define _OBJC_IVAR_0(...) _Pragma("message \"Cannot call OBJC_IVAR with 0 params!\"")
#define _OBJC_IVAR_1(Name) _OBJC_IVAR_2(__strong id, Name)
// first major implemenation. because we do no assignment here, we don't have to check for is_set
#define _OBJC_IVAR_2(Type, Name) Type& Name = (_OBJC_IVAR::IMPL<Type>(self, OBJC_IVAR_NAME(Name)))
// this is where things get fun. we have 'OBJC_IVAR_CUR_NAME', instead of calling OBJC_IVAR_NAME
// multiple times, because we must ensure that COUNTER does not change during the course of the macro
// this is the 'inner bowels' of C, and it's quite hacky. Returns a reference to an associated object
// which is wrapped in a NSValue. Note that we only evaluate 'default' once throught the course of the
// application's cycle, so you can feel free to put intensive loading code there.
static NSString *_OBJC_IVAR_CUR_NAME;
#define _OBJC_IVAR_3(Type, Name, Default) Type& Name = (_OBJC_IVAR::IS_SET(self, (_OBJC_IVAR_CUR_NAME = OBJC_IVAR_NAME(Name))) ? _OBJC_IVAR::IMPL<Type>(self, _OBJC_IVAR_CUR_NAME) : _OBJC_IVAR::IMPL<Type>(self, _OBJC_IVAR_CUR_NAME, Default))
// namespace to wrap al lof our functions
namespace _OBJC_IVAR
{
// internal dictionary of all associated object names, so that we don't run
// into memory management issues. we use a set here, because we should never
// have duplicate associated object names.
static NSMutableSet *_names = [NSMutableSet set];
// wraps a value and a reference to a value. used over std::reference_wrapper,
// as that doesn't actually copy in the value passed. That is required for what
// we are doing, as we cannot be assigning to constants.
template<typename T>
class Wrapper {
private:
// private value wrapped by this object.
T _value;
// private reference wrapped by this object. should always point to _value.
T& _ref;
public:
// default constructor. assumes 'T' has a valid 0-argument constructor
Wrapper() : _value(), _ref(_value) { }
// argument constructor. makes sure that value is initialized properly
Wrapper(T val) : _value(val), _ref(_value) { }
// returns the reference wrapped by this object
operator T& () {
return _ref;
}
T& get() {
return _ref;
}
};
// interns a name. because objc_getAssociatedObject works only by comparing
// pointers (and +stringWithFormat: isn't guaranteed to return the same pointer),
// we have to make sure that we maintain a list of all valid associated object
// names. these are NOT linked to specific objects, which allows us to reuse some
// memory
inline NSString *name_intern(NSString *name)
{
// intern the value. first check if the object has been interned already,
// and if it is, return that interned value
if (id tmpName = [_names member:name])
{
name = tmpName;
}
// if we haven't interned this value before, then add it to the list and return it.
else
{
[_names addObject:name];
}
return name;
}
// check and see if the requested iVar has been set yet. used for default value setting
BOOL IS_SET(id target, NSString *name)
{
// first intern the name
name = name_intern(name);
// check if the object has this property. objc_getAssociatedObject will ALWAYS
// return NULL if the object doesn't exist. Note the bridged cast. This is because
// objc_getAssociatedObject doesn't care what you throw into the second parameter,
// as long as it is a pointer. That gives us the flexibility at a later date, to,
// for example, just pass a pointer to a single byte, and pull out the value that
// way. However, we pass in a NSString pointer, because it makes it easy for us to
// use and to re-use later.
id val = objc_getAssociatedObject(target, (__bridge const void *) name);
return val != nil;
}
// the actual implementation for setting the iVar. luckily this code isn't too hacky,
// but it is a bit confusing.
template<typename T>
Wrapper<T>& IMPL(id target, NSString *name)
{
// first intern the name
name = name_intern(name);
// define a reference. we use pointers & new here, because C++ memory managment is
// weird at best. Most of the time, you should be using RAII, but when dealing with
// templates & objective-c interpolation, it is almost required that you use pointers
// with new.
Wrapper<T> *reference = nullptr;
// check and see if the object already contains this property, if so, return that value
NSValue *result = objc_getAssociatedObject(target, (__bridge const void *) name);
if (result == nil)
{
// at this point, we need to create a new iVar, with the default constructor for the type.
// for objective-c objects this is 'nil', for integers and floating point values this is 0,
// for C++ structs and classes, this calls the default constructor. If one doesn't exist,
// you WILL get a compile error.
reference = new Wrapper<T>();
// we now set up the object that will hold this wrapper. This is an extension on NSValue
// which allows us to store a generic pointer (in this case a C++ object), and run desired
// code on -dealloc (which will be called at the time the parent object is destroyed), in
// this case, free the memory used by our wrapper.
result = [NSValue valueWithCppObject:reference onDealloc:^(void *) {
delete reference;
}];
// finally, set the associated object to the target, and now we are good to go.
// We use OBJC_ASSOCIATION_RETAIN, so that our NSValue is properly freed when done.
objc_setAssociatedObject(target, (__bridge const void *) name, result, OBJC_ASSOCIATION_RETAIN);
}
// from result, we cast it's -cppObjectValue to a Wrapper, to pull out the value.
reference = static_cast<Wrapper<T> *>([result cppObjectValue]);
// finally, return the pointer as a reference, not a pointer
return *reference;
}
// this is pretty much the same as the other IMPL, but it has specific code for default values.
// I will ignore everything that is the same about the two functions, and only focus on the
// differences, which are few, but mandatory.
template<typename T>
Wrapper<T>& IMPL(id target, NSString *name, const T& defVal)
{
name = name_intern(name);
Wrapper<T> *reference = nullptr; // asign to be the default constructor for 'T'
NSValue *result = objc_getAssociatedObject(target, (__bridge const void *) name);
if (result == nil)
{
// this is the only difference. Instead of constructing with the default constructor,
// simply pass in our new default value as a copy.
reference = new Wrapper<T>(defVal);
result = [NSValue valueWithCppObject:reference onDealloc:^(void *) {
delete reference;
}];
objc_setAssociatedObject(target, (__bridge const void *) name, result, OBJC_ASSOCIATION_RETAIN);
}
reference = static_cast<Wrapper<T> *>([result cppObjectValue]);
return *reference;
}
}
#endif // OBJC_IVAR_HPP
NSValue+CppObject.h
//
// NSValue+CppObject.h
// TestProj
//
// Created by Richard Ross on 8/17/12.
// Copyright (c) 2012 Ultimate Computer Services, Inc. All rights reserved.
//
#import <Foundation/Foundation.h>
// Extension on NSValue to add C++ object support. Because of the difficulty
// involved in templates, I took the easy way out and simply passed in a block
// of code to be run at dealloc.
@interface NSValue (CppObject)
// create a new NSValue instance that holds ptr, and calls 'deallocBlock' on destruction.
+(id) valueWithCppObject:(void *) ptr onDealloc:(void (^)(void *)) deallocBlock;
-(id) initWithCppObject:(void *) ptr onDealloc:(void (^)(void *)) deallocBlock;
// get the held pointer of this object. I called it -cppObjectValue, so
// there was no confusion with -pointerValue.
-(void *) cppObjectValue;
@end
NSValue+CppObject.m
//
// NSValue+CppObject.m
// TestProj
//
// Created by Richard Ross on 8/17/12.
// Copyright (c) 2012 Ultimate Computer Services, Inc. All rights reserved.
//
#import "NSValue+CppObject.h"
// the concrete NSValue subclass for supporting C++ objects. Pretty straight-forward interface.
@interface ConcreteCppObject : NSValue
{
// the underlying object that is being pointed to
void *_object;
// the block that is called on -dealloc
void (^_deallocBlock)(void *);
}
@end
@implementation ConcreteCppObject
// object initialization
+(id) valueWithCppObject:(void *)ptr onDealloc:(void (^)(void *))deallocBlock
{
return [[self alloc] initWithCppObject:ptr onDealloc:deallocBlock];
}
-(id) initWithCppObject:(void *)ptr onDealloc:(void (^)(void *))deallocBlock
{
if (self = [super init])
{
_object = ptr;
_deallocBlock = deallocBlock;
}
return self;
}
// required methods for subclassing NSValue
-(const char *) objCType
{
return @encode(void *);
}
-(void) getValue:(void *)value
{
*((void **) value) = _object;
}
// comparison
-(BOOL) isEqual:(id)compare
{
if (![compare isKindOfClass:[self class]])
return NO;
return [compare cppObjectValue] == [self cppObjectValue];
}
// cleanup
-(void) dealloc
{
// this should manage cleanup for us
_deallocBlock(_object);
}
// value access
-(void *) cppObjectValue
{
return _object;
}
@end
// NSValue additions for creating the concrete instances
@implementation NSValue (CppObject)
// object initialization
+(id) valueWithCppObject:(void *)ptr onDealloc:(void (^)(void *))deallocBlock
{
return [[ConcreteCppObject alloc] initWithCppObject:ptr onDealloc:deallocBlock];
}
-(id) initWithCppObject:(void *)ptr onDealloc:(void (^)(void *))deallocBlock
{
return [[self class] valueWithCppObject:ptr onDealloc:deallocBlock];
}
// unless the NSValue IS a ConcreteCppObject, then we shouldn't do anything here
-(void *) cppObjectValue
{
[self doesNotRecognizeSelector:_cmd];
return nil;
}
@end
使用例:
#import "OBJC_IVAR.hpp"
@interface SomeObject : NSObject
-(void) doSomething;
@end
@implementation SomeObject
-(void) doSomething
{
OBJC_IVAR(__strong id, test, @"Hello World!");
OBJC_IVAR(int, test2, 15);
NSLog(@"%@", test);
NSLog(@"%i", test2 += 7);
// new scope
{
OBJC_IVAR(int, test, 100);
NSLog(@"%i", ++test);
}
[self somethingElse];
}
-(void) somethingElse
{
OBJC_IVAR(int, newVar, 7);
NSLog(@"%i", newVar++);
}
@end
int main()
{
SomeObject *obj = [SomeObject new];
[obj doSomething];
[obj doSomething];
[obj doSomething];
}