ゾウがアジアゾウかアフリカゾウかを分類するために、AdaBoost を使用するアプリケーションを実装しています。私の入力データは次のとおりです。
Elephant size: 235 Elephant weight: 3568 Sample weight: 0.1 Elephant type: Asian
Elephant size: 321 Elephant weight: 4789 Sample weight: 0.1 Elephant type: African
Elephant size: 389 Elephant weight: 5689 Sample weight: 0.1 Elephant type: African
Elephant size: 210 Elephant weight: 2700 Sample weight: 0.1 Elephant type: Asian
Elephant size: 270 Elephant weight: 3654 Sample weight: 0.1 Elephant type: Asian
Elephant size: 289 Elephant weight: 3832 Sample weight: 0.1 Elephant type: African
Elephant size: 368 Elephant weight: 5976 Sample weight: 0.1 Elephant type: African
Elephant size: 291 Elephant weight: 4872 Sample weight: 0.1 Elephant type: Asian
Elephant size: 303 Elephant weight: 5132 Sample weight: 0.1 Elephant type: African
Elephant size: 246 Elephant weight: 2221 Sample weight: 0.1 Elephant type: African
分類子クラスを作成しました:
import java.util.ArrayList;
public class Classifier {
private String feature;
private int treshold;
private double errorRate;
private double classifierWeight;
public void classify(Elephant elephant){
if(feature.equals("size")){
if(elephant.getSize()>treshold){
elephant.setClassifiedAs(ElephantType.African);
}
else{
elephant.setClassifiedAs(ElephantType.Asian);
}
}
else if(feature.equals("weight")){
if(elephant.getWeight()>treshold){
elephant.setClassifiedAs(ElephantType.African);
}
else{
elephant.setClassifiedAs(ElephantType.Asian);
}
}
}
public void countErrorRate(ArrayList<Elephant> elephants){
double misclassified = 0;
for(int i=0;i<elephants.size();i++){
if(elephants.get(i).getClassifiedAs().equals(elephants.get(i).getType()) == false){
misclassified++;
}
}
this.setErrorRate(misclassified/elephants.size());
}
public void countClassifierWeight(){
this.setClassifierWeight(0.5*Math.log((1.0-errorRate)/errorRate));
}
public Classifier(String feature, int treshold){
setFeature(feature);
setTreshold(treshold);
}
そして、次のように、「サイズ」としきい値 = 250 で分類する分類子を main() でトレーニングしました。
main.trainAWeakClassifier("size", 250);
分類器が各象を分類した後、分類器の誤差を数え、各サンプル (象) の重みを更新し、分類器の重みを数えます。私の質問は次のとおりです。
次の分類器を作成するにはどうすればよいですか? また、誤分類されたサンプルをどのように処理しますか? 最初の分類器を適切に作成しましたか?