私はカメラとそのK行列(キャリブレーション行列)を持っており、平面の画像も持っています。4つのコーナーの実際のポイントと対応するピクセルを知っています。z = 0の場合のH行列の計算方法を知っています(Hは画像と実平面の間のホモグラフィ行列です)。そして今、私は回転行列と変換ベクトルを使って平面の実際の点(3D点)を取得しようとしています:セクション3-3.3のRaulRojasによるオーバーヘッドビデオカメラのキャリブレーション。私のコードは次のとおりです。
ImagePointsScreen=[16,8,1;505,55,1;505,248,1;44,301,1;];
screenImage=imread( 'screen.jpg');
RealPointsMirror=[0,0,1;9,0,1;9,6,1;0,6,1]; %Mirror
RealPointsScreen=[0,0,1;47.5,0,1;47.5,20,1;0,20,1];%Screen
imagesc(screenImage);
hold on
for i=1:4
drawBubble(ImagePointsScreen(i,1),ImagePointsScreen(i,2),1,'g',int2str(i),'r')
end
Points3DScreen=Get3DpointSurface(RealPointsScreen,ImagePointsScreen,'Screen');
figure
hold on
plot3(Points3DScreen(:,1),Points3DScreen(:,2),Points3DScreen(:,3));
for i=1:4
drawBubble(Points3DScreen(i,1),Points3DScreen(i,2),1,'g',int2str(i),'r')
end
function [ Points3D ] = Get3DpointSurface( RealPoints,ImagePoints,name)
M=zeros(8,9);
for i=1:4
M((i*2)-1,1:3)=-RealPoints(i,:);
M((i*2)-1,7:9)=RealPoints(i,:)*ImagePoints(i,1);
M(i*2,4:6)=-RealPoints(i,:);
M(i*2,7:9)=RealPoints(i,:)*ImagePoints(i,2);
end
[U S V] = svd(M);
X = V(:,end);
H(1,:)=X(1:3,1)';
H(2,:)=X(4:6,1)';
H(3,:)=X(7:9,1)';
K=[680.561906875074,0,360.536967117290;0,682.250270165388,249.568615725655;0,0,1;];
newRO=pinv(K)*H;
h1=newRO(1:3,1);
h2=newRO(1:3,2);
scaleFactor=(norm(h1)+norm(h2))/2;
newRO=newRO./scaleFactor;
r1=newRO(1:3,1);
r2=newRO(1:3,2);
r3=cross(r1,r2);
r3=r3/norm(r3);
R=[r1,r2,r3];
RInv=pinv(R);
O=-RInv*newRO(1:3,3);
M=K*[R,-R*O];
for i=1:4
res=pinv(M)* [ImagePoints(i,1),ImagePoints(i,2),1]';
res=res';
res=res*(1/res(1,4));
Points3D(i,:)=res';
end
Points3D(i+1,:)=Points3D(1,:); %just add the first point to the end of the array for draw square
end
私の結果は:
今私は2つの問題があります:
1.ポイント1は(0,0,0)にあり、これは実際の場所ではありません
2.ポイントが逆さまになっている
私は何をしているのですか?