14

kdb +には、時間列に沿ってテーブルを結合するために通常使用されるaj関数があります。

これは、トレードテーブルとクォートテーブルがあり、すべてのトレードの一般的なクォートを取得する例です。

q)5# t
time         sym  price size 
-----------------------------
09:30:00.439 NVDA 13.42 60511
09:30:00.439 NVDA 13.42 60511
09:30:02.332 NVDA 13.42 100  
09:30:02.332 NVDA 13.42 100  
09:30:02.333 NVDA 13.41 100  

q)5# q
time         sym  bid   ask   bsize asize
-----------------------------------------
09:30:00.026 NVDA 13.34 13.44 3     16   
09:30:00.043 NVDA 13.34 13.44 3     17   
09:30:00.121 NVDA 13.36 13.65 1     10   
09:30:00.386 NVDA 13.36 13.52 21    1    
09:30:00.440 NVDA 13.4  13.44 15    17

q)5# aj[`time; t; q]
time         sym  price size  bid   ask   bsize asize
-----------------------------------------------------
09:30:00.439 NVDA 13.42 60511 13.36 13.52 21    1    
09:30:00.439 NVDA 13.42 60511 13.36 13.52 21    1    
09:30:02.332 NVDA 13.42 100   13.34 13.61 1     1    
09:30:02.332 NVDA 13.42 100   13.34 13.61 1     1    
09:30:02.333 NVDA 13.41 100   13.34 13.51 1     1  

パンダを使用して同じ操作を行うにはどうすればよいですか?インデックスがdatetime64であるトレードおよびクォートデータフレームを使用しています。

In [55]: quotes.head()
Out[55]: 
                              bid    ask  bsize  asize
2012-09-06 09:30:00.026000  13.34  13.44      3     16
2012-09-06 09:30:00.043000  13.34  13.44      3     17
2012-09-06 09:30:00.121000  13.36  13.65      1     10
2012-09-06 09:30:00.386000  13.36  13.52     21      1
2012-09-06 09:30:00.440000  13.40  13.44     15     17

In [56]: trades.head()
Out[56]: 
                            price   size
2012-09-06 09:30:00.439000  13.42  60511
2012-09-06 09:30:00.439000  13.42  60511
2012-09-06 09:30:02.332000  13.42    100
2012-09-06 09:30:02.332000  13.42    100
2012-09-06 09:30:02.333000  13.41    100

パンダにはasof関数がありますが、それはDataFrameでは定義されておらず、Seriesオブジェクトでのみ定義されています。各シリーズをループして1つずつ並べることができると思いますが、もっと良い方法があるかどうか疑問に思っています。

4

3 に答える 3

11

ordered_merge少し前に、あまり宣伝されていない関数を書きました。

In [27]: quotes
Out[27]: 
                        time    bid    ask  bsize  asize
0 2012-09-06 09:30:00.026000  13.34  13.44      3     16
1 2012-09-06 09:30:00.043000  13.34  13.44      3     17
2 2012-09-06 09:30:00.121000  13.36  13.65      1     10
3 2012-09-06 09:30:00.386000  13.36  13.52     21      1
4 2012-09-06 09:30:00.440000  13.40  13.44     15     17

In [28]: trades
Out[28]: 
                        time  price   size
0 2012-09-06 09:30:00.439000  13.42  60511
1 2012-09-06 09:30:00.439000  13.42  60511
2 2012-09-06 09:30:02.332000  13.42    100
3 2012-09-06 09:30:02.332000  13.42    100
4 2012-09-06 09:30:02.333000  13.41    100

In [29]: ordered_merge(quotes, trades)
Out[29]: 
                        time    bid    ask  bsize  asize  price   size
0 2012-09-06 09:30:00.026000  13.34  13.44      3     16    NaN    NaN
1 2012-09-06 09:30:00.043000  13.34  13.44      3     17    NaN    NaN
2 2012-09-06 09:30:00.121000  13.36  13.65      1     10    NaN    NaN
3 2012-09-06 09:30:00.386000  13.36  13.52     21      1    NaN    NaN
4 2012-09-06 09:30:00.439000    NaN    NaN    NaN    NaN  13.42  60511
5 2012-09-06 09:30:00.439000    NaN    NaN    NaN    NaN  13.42  60511
6 2012-09-06 09:30:00.440000  13.40  13.44     15     17    NaN    NaN
7 2012-09-06 09:30:02.332000    NaN    NaN    NaN    NaN  13.42    100
8 2012-09-06 09:30:02.332000    NaN    NaN    NaN    NaN  13.42    100
9 2012-09-06 09:30:02.333000    NaN    NaN    NaN    NaN  13.41    100

In [32]: ordered_merge(quotes, trades, fill_method='ffill')
Out[32]: 
                        time    bid    ask  bsize  asize  price   size
0 2012-09-06 09:30:00.026000  13.34  13.44      3     16    NaN    NaN
1 2012-09-06 09:30:00.043000  13.34  13.44      3     17    NaN    NaN
2 2012-09-06 09:30:00.121000  13.36  13.65      1     10    NaN    NaN
3 2012-09-06 09:30:00.386000  13.36  13.52     21      1    NaN    NaN
4 2012-09-06 09:30:00.439000  13.36  13.52     21      1  13.42  60511
5 2012-09-06 09:30:00.439000  13.36  13.52     21      1  13.42  60511
6 2012-09-06 09:30:00.440000  13.40  13.44     15     17  13.42  60511
7 2012-09-06 09:30:02.332000  13.40  13.44     15     17  13.42    100
8 2012-09-06 09:30:02.332000  13.40  13.44     15     17  13.42    100
9 2012-09-06 09:30:02.333000  13.40  13.44     15     17  13.41    100

これは、KDB を模倣した「左結合」に簡​​単に拡張できます (コードに精通している人にとっては)。この場合、取引データの順入力は適切ではないことを認識しています。機能を説明するだけです。

于 2012-09-09T02:22:04.847 に答える
9

質問で述べたように、各列をループすることでうまくいくはずです。

df1.apply(lambda x: x.asof(df2.index))

すべての列を1回のショットで実行するために、より高速なNaNナイーブバージョンのDataFrame.asofを作成できる可能性があります。しかし今のところ、これが最も簡単な方法だと思います。

于 2012-09-07T22:16:09.623 に答える