Matlab で動作するアルゴリズムを numpy に移植したところ、奇妙な動作が観察されました。関連するコード セグメントは次のとおりです。
P = eye(4)*1e20;
A = [1 -0.015 -0.025 -0.035; 0.015 1 0.035 -0.025; 0.025 -0.035 1 0.015; 0.035 0.025 -0.015 1];
V1 = A*(P*A')
V2 = (A*P)*A'
このコードを Matlab で実行すると、次の行列が提供されます。
V1 = 1.0021e+20 0 -8.0000e+00 0
0 1.0021e+20 0 0
-8.0000e+00 0 1.0021e+20 0
0 0 0 1.0021e+20
V2 = 1.0021e+20 0 -8.0000e+00 0
0 1.0021e+20 0 0
-8.0000e+00 0 1.0021e+20 0
0 0 0 1.0021e+20
予想どおり、V1 と V2 は同じであることに注意してください。
同じコードを Octave で実行すると、以下が提供されます。
V1 = 1.0021e+20 4.6172e+01 -1.3800e+02 1.8250e+02
-4.6172e+01 1.0021e+20 -1.8258e+02 -1.3800e+02
1.3801e+02 1.8239e+02 1.0021e+20 -4.6125e+01
-1.8250e+02 1.3800e+02 4.6125e+01 1.0021e+20
V2 = 1.0021e+20 -4.6172e+01 1.3801e+02 -1.8250e+02
4.6172e+01 1.0021e+20 1.8239e+02 1.3800e+02
-1.3800e+02 -1.8258e+02 1.0021e+20 4.6125e+01
1.8250e+02 -1.3800e+02 -4.6125e+01 1.0021e+20
numpy では、セグメントは次のようになります
from numpy import array, dot, eye
A = numpy.array([[1, -0.015, -0.025, -0.035],[0.015, 1, 0.035, -0.025],[0.025, -0.035, 1, 0.015],[0.035, 0.025, -0.015, 1]])
P = numpy.eye(4)*1e20
print numpy.dot(A,numpy.dot(P,A.transpose()))
print numpy.dot(numpy.dot(A,P),A.transpose())
出力する
[[ 1.00207500e+20 4.61718750e+01 -1.37996094e+02 1.82500000e+02]
[ -4.61718750e+01 1.00207500e+20 -1.82582031e+02 -1.38000000e+02]
[ 1.38011719e+02 1.82386719e+02 1.00207500e+20 -4.61250000e+01]
[ -1.82500000e+02 1.38000000e+02 4.61250000e+01 1.00207500e+20]]
[[ 1.00207500e+20 -4.61718750e+01 1.38011719e+02 -1.82500000e+02]
[ 4.61718750e+01 1.00207500e+20 1.82386719e+02 1.38000000e+02]
[ -1.37996094e+02 -1.82582031e+02 1.00207500e+20 4.61250000e+01]
[ 1.82500000e+02 -1.38000000e+02 -4.61250000e+01 1.00207500e+20]]
したがって、Octave と numpy の両方で同じ答えが得られますが、Matlab のものとは大きく異なります。最初のポイントは、V1 != V2 であり、正しくないようです。もう 1 つのポイントは、非対角要素は対角要素よりも桁違いに小さいにもかかわらず、これが私のアルゴリズムで何らかの問題を引き起こしているように思われることです。
numpy と Octave がこのように動作する方法を知っている人はいますか?