11

グループ化された DataFrame の複数の列を組み合わせて、新しい DataFrame を作成したいことがよくあります。apply() 関数を使用するとそれが可能になりますが、不要なインデックスを作成する必要があります。

 In [359]: df = pandas.DataFrame({'x': 3 * ['a'] + 2 * ['b'], 'y': np.random.normal(size=5), 'z': np.random.normal(size=5)})

 In [360]: df
 Out[360]: 
    x         y         z
 0  a  0.201980 -0.470388
 1  a  0.190846 -2.089032
 2  a -1.131010  0.227859
 3  b -0.263865 -1.906575
 4  b -1.335956 -0.722087

 In [361]: df.groupby('x').apply(lambda x: pandas.DataFrame({'r': (x.y + x.z).sum() / x.z.sum(), 's': (x.y + x.z ** 2).sum() / x.z.sum()}))
 ---------------------------------------------------------------------------
 ValueError                                Traceback (most recent call last)
 /home/emarkley/work/src/partner_analysis2/main.py in <module>()
 ----> 1 df.groupby('x').apply(lambda x: pandas.DataFrame({'r': (x.y + x.z).sum() / x.z.sum(), 's': (x.y + x.z ** 2).sum() / x.z.sum()}))

 /usr/local/lib/python3.2/site-packages/pandas-0.8.2.dev-py3.2-linux-x86_64.egg/pandas/core/groupby.py in apply(self, func, *args, **kwargs)
     267         applied : type depending on grouped object and function
     268         """
 --> 269         return self._python_apply_general(func, *args, **kwargs)
     270 
     271     def aggregate(self, func, *args, **kwargs):

 /usr/local/lib/python3.2/site-packages/pandas-0.8.2.dev-py3.2-linux-x86_64.egg/pandas/core/groupby.py in _python_apply_general(self, func, *args, **kwargs)
     417             group_axes = _get_axes(group)
     418 
 --> 419             res = func(group, *args, **kwargs)
     420 
     421             if not _is_indexed_like(res, group_axes):

 /home/emarkley/work/src/partner_analysis2/main.py in <lambda>(x)
 ----> 1 df.groupby('x').apply(lambda x: pandas.DataFrame({'r': (x.y + x.z).sum() / x.z.sum(), 's': (x.y + x.z ** 2).sum() / x.z.sum()}))

 /usr/local/lib/python3.2/site-packages/pandas-0.8.2.dev-py3.2-linux-x86_64.egg/pandas/core/frame.py in __init__(self, data, index, columns, dtype, copy)
     371             mgr = self._init_mgr(data, index, columns, dtype=dtype, copy=copy)
     372         elif isinstance(data, dict):
 --> 373             mgr = self._init_dict(data, index, columns, dtype=dtype)
     374         elif isinstance(data, ma.MaskedArray):
     375             mask = ma.getmaskarray(data)

 /usr/local/lib/python3.2/site-packages/pandas-0.8.2.dev-py3.2-linux-x86_64.egg/pandas/core/frame.py in _init_dict(self, data, index, columns, dtype)
     454         # figure out the index, if necessary
     455         if index is None:
 --> 456             index = extract_index(data)
     457         else:
     458             index = _ensure_index(index)

 /usr/local/lib/python3.2/site-packages/pandas-0.8.2.dev-py3.2-linux-x86_64.egg/pandas/core/frame.py in extract_index(data)
    4719 
    4720         if not indexes and not raw_lengths:
 -> 4721             raise ValueError('If use all scalar values, must pass index')
    4722 
    4723         if have_series or have_dicts:

 ValueError: If use all scalar values, must pass index

 In [362]: df.groupby('x').apply(lambda x: pandas.DataFrame({'r': (x.y + x.z).sum() / x.z.sum(), 's': (x.y + x.z ** 2).sum() / x.z.sum()}, index=[0]))
 Out[362]: 
             r         s
 x                      
 a 0  1.316605 -1.672293
 b 0  1.608606 -0.972593

apply() またはその他の関数を使用して、余分なゼロのインデックスなしで同じ結果を得る方法はありますか?

4

1 に答える 1

13

グループごとに集計 r 値と s 値を生成しているため、Seriesここで使用する必要があります。

In [26]: df.groupby('x').apply(lambda x: 
             Series({'r': (x.y + x.z).sum() / x.z.sum(), 
                     's': (x.y + x.z ** 2).sum() / x.z.sum()}))
Out[26]: 
           r           s
x                       
a  -0.338590   -0.916635
b  66.655533  102.566146
于 2012-09-13T17:41:05.363 に答える