Apache Solr または ElasticSearch を使用すると、柔軟性とパフォーマンスが向上すると思いますが、これはAggregation Frameworkを使用してサポートされています。
MongoDB を使用する主な問題は、N 回クエリを実行する必要があることです。最初は一致する結果を取得するため、次にグループごとに 1 回です。全文検索エンジンを使用すると、1 つのクエリですべてを取得できます。
例
//'tags' filter simulates the search
//this query gets the products
db.products.find({tags: {$all: ["tag1", "tag2"]}})
//this query gets the size facet
db.products.aggregate(
{$match: {tags: {$all: ["tag1", "tag2"]}}},
{$group: {_id: "$size"}, count: {$sum:1}},
{$sort: {count:-1}}
)
//this query gets the color facet
db.products.aggregate(
{$match: {tags: {$all: ["tag1", "tag2"]}}},
{$group: {_id: "$color"}, count: {$sum:1}},
{$sort: {count:-1}}
)
//this query gets the brand facet
db.products.aggregate(
{$match: {tags: {$all: ["tag1", "tag2"]}}},
{$group: {_id: "$brand"}, count: {$sum:1}},
{$sort: {count:-1}}
)
ユーザーがファセットを使用して検索をフィルター処理したら、次のように、このフィルターをクエリ述語と一致述語に追加する必要があります。
//user clicks on "Brand 1" facet
db.products.find({tags: {$all: ["tag1", "tag2"]}, brand: "Brand 1"})
db.products.aggregate(
{$match: {tags: {$all: ["tag1", "tag2"]}}, brand: "Brand 1"},
{$group: {_id: "$size"}, count: {$sum:1}},
{$sort: {count:-1}}
)
db.products.aggregate(
{$match: {tags: {$all: ["tag1", "tag2"]}}, brand: "Brand 1"},
{$group: {_id: "$color"}, count: {$sum:1}},
{$sort: {count:-1}}
)
db.products.aggregate(
{$match: {tags: {$all: ["tag1", "tag2"]}}, brand: "Brand 1"},
{$group: {_id: "$brand"}, count: {$sum:1}},
{$sort: {count:-1}}
)