13

一部の整数型では、浮動小数点値が整数の表現可能な範囲をはるかに超えている場合でも、浮動小数点型の値に最も近い値を見つけるにはどうすればよいですか。

またはより正確には:

浮動F小数点型にします (おそらくfloatdouble、またはlong double)。I整数型にしましょう。

と の両方が の有効な特殊化を持っているFと仮定します。Istd::numeric_limits<>

の表現可能な値が与えられ、FC++03 のみを使用して、表現可能な最も近い値を見つけるにはどうすればよいIですか?

私は、純粋で効率的でスレッドセーフなソリューション、および C++03 によって保証されていること以外はプラットフォームについて何も想定していないソリューションを求めています。

そのような解決策が存在しない場合、C99/C++11 の新機能を使用して解決策を見つけることは可能ですか?

C99 の使用lround()は、ドメイン エラーが報告される方法が自明ではないため、問題があるようです。これらのドメイン エラーは、移植可能でスレッド セーフな方法でキャッチできますか?

注: Boost はおそらくそのboost::numerics::converter<>テンプレートを介してソリューションを提供することを認識していますが、その複雑さと冗長性が高いため、そこから本質的な要素を抽出できていないため、それらのソリューションが有効かどうかを確認できませんでした。 C++03 を超える仮定。

I(f)次の素朴なアプローチは、 の整数部分がfの表現可能な値ではない場合、の結果が C++03 によって定義されないという事実のために失敗しますI

template<class I, class F> I closest_int(F f)
{
  return I(f);
}

次に、次のアプローチを検討してください。

template<class I, class F> I closest_int(F f)
{
  if (f < std::numeric_limits<I>::min()) return std::numeric_limits<I>::min();
  if (std::numeric_limits<I>::max() < f) return std::numeric_limits<I>::max();
  return I(f);
}

F(std::numeric_limits<I>::min())と の不可欠な部分がでF(std::numeric_limits<I>::max())表現できない可能性があるため、これも失敗しますI

最後に、これも失敗するこの 3 番目のアプローチを検討してください。

template<class I, class F> I closest_int(F f)
{
  if (f <= std::numeric_limits<I>::min()) return std::numeric_limits<I>::min();
  if (std::numeric_limits<I>::max() <= f) return std::numeric_limits<I>::max();
  return I(f);
}

今回I(f)は常に明確な結果が得られますが、F(std::numeric_limits<I>::max())よりもはるかに小さい可能性があるため、 未満の複数の整数値である浮動小数点値をstd::numeric_limits<I>::max()返す可能性があります。std::numeric_limits<I>::max()std::numeric_limits<I>::max()

F(i)変換が最も近い表現可能な浮動小数点値に切り上げるか切り下げるかは未定義であるため、すべての問題が発生することに注意してください。

C++03 (4.9 Floating-integral conversions) の関連セクションは次のとおりです。

整数型または列挙型の右辺値は、浮動小数点型の右辺値に変換できます。可能であれば、結果は正確です。それ以外の場合は、表現可能な次の低い値または高い値の実装定義の選択です。

4

1 に答える 1

3

基数 2 (バイナリ) の浮動小数点型と 64 ビットまでの整数型の実用的なソリューションがあります。下記参照。コメントは明確にする必要があります。出力は次のとおりです。

// file: f2i.cpp
//
// compiled with MinGW x86 (gcc version 4.6.2) as:
//   g++ -Wall -O2 -std=c++03 f2i.cpp -o f2i.exe
#include <iostream>
#include <iomanip>
#include <limits>

using namespace std;

template<class I, class F> I truncAndCap(F f)
{
/*
  This function converts (by truncating the
  fractional part) the floating-point value f (of type F)
  into an integer value (of type I), avoiding undefined
  behavior by returning std::numeric_limits<I>::min() and
  std::numeric_limits<I>::max() when f is too small or
  too big to be converted to type I directly.

  2 problems:
  - F may fail to convert to I,
    which is undefined behavior and we want to avoid that.
  - I may not convert exactly into F
    - Direct I & F comparison fails because of I to F promotion,
      which can be inexact.

  This solution is for the most practical case when I and F
  are radix-2 (binary) integer and floating-point types.
*/
  int Idigits = numeric_limits<I>::digits;
  int Isigned = numeric_limits<I>::is_signed;

/*
  Calculate cutOffMax = 2 ^ std::numeric_limits<I>::digits
  (where ^ denotes exponentiation) as a value of type F.

  We assume that F is a radix-2 (binary) floating-point type AND
  it has a big enough exponent part to hold the value of
  std::numeric_limits<I>::digits.

  FLT_MAX_10_EXP/DBL_MAX_10_EXP/LDBL_MAX_10_EXP >= 37
  (guaranteed per C++ standard from 2003/C standard from 1999)
  corresponds to log2(1e37) ~= 122, so the type I can contain
  up to 122 bits. In practice, integers longer than 64 bits
  are extremely rare (if existent at all), especially on old systems
  of the 2003 C++ standard's time.
*/
  const F cutOffMax = F(I(1) << Idigits / 2) * F(I(1) << (Idigits / 2 + Idigits % 2));

  if (f >= cutOffMax)
    return numeric_limits<I>::max();

/*
  Calculate cutOffMin = - 2 ^ std::numeric_limits<I>::digits
  (where ^ denotes exponentiation) as a value of type F for
  signed I's OR cutOffMin = 0 for unsigned I's in a similar fashion.
*/
  const F cutOffMin = Isigned ? -F(I(1) << Idigits / 2) * F(I(1) << (Idigits / 2 + Idigits % 2)) : 0;

  if (f <= cutOffMin)
    return numeric_limits<I>::min();

/*
  Mathematically, we may still have a little problem (2 cases):
    cutOffMin < f < std::numeric_limits<I>::min()
    srd::numeric_limits<I>::max() < f < cutOffMax

  These cases are only possible when f isn't a whole number, when
  it's either std::numeric_limits<I>::min() - value in the range (0,1)
  or std::numeric_limits<I>::max() + value in the range (0,1).

  We can ignore this altogether because converting f to type I is
  guaranteed to truncate the fractional part off, and therefore
  I(f) will always be in the range
  [std::numeric_limits<I>::min(), std::numeric_limits<I>::max()].
*/

  return I(f);
}

template<class I, class F> void test(const char* msg, F f)
{
  I i = truncAndCap<I,F>(f);
  cout <<
    msg <<
    setiosflags(ios_base::showpos) <<
    setw(14) << setprecision(12) <<
    f << " -> " <<
    i <<
    resetiosflags(ios_base::showpos) <<
    endl;
}

#define TEST(I,F,VAL) \
  test<I,F>(#F " -> " #I ": ", VAL);

int main()
{
  TEST(short, float,     -1.75f);
  TEST(short, float,     -1.25f);
  TEST(short, float,     +0.00f);
  TEST(short, float,     +1.25f);
  TEST(short, float,     +1.75f);

  TEST(short, float, -32769.00f);
  TEST(short, float, -32768.50f);
  TEST(short, float, -32768.00f);
  TEST(short, float, -32767.75f);
  TEST(short, float, -32767.25f);
  TEST(short, float, -32767.00f);
  TEST(short, float, -32766.00f);
  TEST(short, float, +32766.00f);
  TEST(short, float, +32767.00f);
  TEST(short, float, +32767.25f);
  TEST(short, float, +32767.75f);
  TEST(short, float, +32768.00f);
  TEST(short, float, +32768.50f);
  TEST(short, float, +32769.00f);

  TEST(int, float, -2147483904.00f);
  TEST(int, float, -2147483648.00f);
  TEST(int, float, -16777218.00f);
  TEST(int, float, -16777216.00f);
  TEST(int, float, -16777215.00f);
  TEST(int, float, +16777215.00f);
  TEST(int, float, +16777216.00f);
  TEST(int, float, +16777218.00f);
  TEST(int, float, +2147483648.00f);
  TEST(int, float, +2147483904.00f);

  TEST(int, double, -2147483649.00);
  TEST(int, double, -2147483648.00);
  TEST(int, double, -2147483647.75);
  TEST(int, double, -2147483647.25);
  TEST(int, double, -2147483647.00);
  TEST(int, double, +2147483647.00);
  TEST(int, double, +2147483647.25);
  TEST(int, double, +2147483647.75);
  TEST(int, double, +2147483648.00);
  TEST(int, double, +2147483649.00);

  TEST(unsigned, double,          -1.00);
  TEST(unsigned, double,          +1.00);
  TEST(unsigned, double, +4294967295.00);
  TEST(unsigned, double, +4294967295.25);
  TEST(unsigned, double, +4294967295.75);
  TEST(unsigned, double, +4294967296.00);
  TEST(unsigned, double, +4294967297.00);

  return 0;
}

出力 ( ideoneは私の PC と同じように出力します):

float -> short:          -1.75 -> -1
float -> short:          -1.25 -> -1
float -> short:             +0 -> +0
float -> short:          +1.25 -> +1
float -> short:          +1.75 -> +1
float -> short:         -32769 -> -32768
float -> short:       -32768.5 -> -32768
float -> short:         -32768 -> -32768
float -> short:      -32767.75 -> -32767
float -> short:      -32767.25 -> -32767
float -> short:         -32767 -> -32767
float -> short:         -32766 -> -32766
float -> short:         +32766 -> +32766
float -> short:         +32767 -> +32767
float -> short:      +32767.25 -> +32767
float -> short:      +32767.75 -> +32767
float -> short:         +32768 -> +32767
float -> short:       +32768.5 -> +32767
float -> short:         +32769 -> +32767
float -> int:    -2147483904 -> -2147483648
float -> int:    -2147483648 -> -2147483648
float -> int:      -16777218 -> -16777218
float -> int:      -16777216 -> -16777216
float -> int:      -16777215 -> -16777215
float -> int:      +16777215 -> +16777215
float -> int:      +16777216 -> +16777216
float -> int:      +16777218 -> +16777218
float -> int:    +2147483648 -> +2147483647
float -> int:    +2147483904 -> +2147483647
double -> int:    -2147483649 -> -2147483648
double -> int:    -2147483648 -> -2147483648
double -> int: -2147483647.75 -> -2147483647
double -> int: -2147483647.25 -> -2147483647
double -> int:    -2147483647 -> -2147483647
double -> int:    +2147483647 -> +2147483647
double -> int: +2147483647.25 -> +2147483647
double -> int: +2147483647.75 -> +2147483647
double -> int:    +2147483648 -> +2147483647
double -> int:    +2147483649 -> +2147483647
double -> unsigned:             -1 -> 0
double -> unsigned:             +1 -> 1
double -> unsigned:    +4294967295 -> 4294967295
double -> unsigned: +4294967295.25 -> 4294967295
double -> unsigned: +4294967295.75 -> 4294967295
double -> unsigned:    +4294967296 -> 4294967295
double -> unsigned:    +4294967297 -> 4294967295
于 2012-09-27T04:43:50.170 に答える