0

わかりましたので、これについて少し迷っています。したがって、この 0 0 0 0 を見て、各 0 をそれぞれ 1 つずつ個別に見ると、0 から 1 に変わる確率は 0.01 です。したがって、4 つの数字があり、各数字が 0 または 1 になる可能性があります。

確率は、イベントが発生する可能性を考えられる結果の数で割って決定することによって測定されます

考えられる結果は次のとおりです。

0000 0001 0010 0100 1000 1100 1001 1010 0101 0011 0110 1110 0111 1011 1101 1111

したがって、合計16の可能な結果または4 ^ 2、つまり4つの数値があり、可能な結果によって0または1になる可能性があります

したがって、数列が 0000 から 1111 に変わる確率は 0.01/16 になります。

0000から0100までの数字の確率も0.01/16?

そして、すべての数が同じままである確率は、つまり 0000 から 0000 までは 0.01/16 のままです。

それはちょっと理にかなっていますが、それらすべてが同じ確率になるかどうかはわかりませんか?

それとも、私はこれを間違っているので、各数値が変更される可能性は 0.01 であるため、文字列が 0000 から 1111 に移動するのは 0.01 *4 / 16 または 0.0025 になります。

0000 から 0100 に変化する確率は 0.01 * 1 /16 になります。

0000 から 0000 に変更すると、0.01*0 /16 になります。

これについて助けてくれてありがとう

4

2 に答える 2

3

ここには2つのことがあります。1 つは、可能な結果の数 (16) と各結果の確率です。

単一のビットが 1 に反転する確率は 0 になる方向に偏っているため、結果の確率の分布は均一ではありません。各スポットで 1 または 0 の確率が 50% である場合、16 個の結果のそれぞれの確率は1/16. ここではそうではありません。

私がとるアプローチは、数値をバケットにグループ化することです。16 の結果のうち、1 は 0、4 は 1、6 は 2、4 は 3、1 は 4 の 1 です。

4 つの 0 の確率は です99%^4。1 の確率は です1% x 99%^3。2 の確率は です1%^2 x 99%^2。など。それぞれの確率を計算し、バケットのサイズで割ります。それらを合計すると、100% になるはずです (健全性チェック)。

スプレッドシートで確認したところ、結果は良好なようです。

Outcome Probability
0000    0.96059601
0001    0.00970299
0010    0.00970299
0100    0.00970299
1000    0.00970299
0011    0.00009801
0101    0.00009801
1001    0.00009801
0110    0.00009801
1010    0.00009801
1100    0.00009801
0111    0.00000099
1011    0.00000099
1101    0.00000099
1110    0.00000099
1111    0.00000001
于 2012-10-02T14:49:20.243 に答える
2

0 が 1 に変化する確率は 0.01 であると述べています (0.99 は変化しないと推測しています)。

全体の確率は、次の単一の確率の積です。

簡単なケースをやってみましょう:

0000~1111

(.01) * (.01) * (.01) * (.01) = (.01)^4 = .00000001

0000~0100

(.99) * (.01) * (.99) * (.99) = (.99)^3 * (.01) = .00970299

だから同じ確率じゃない

于 2012-10-02T14:44:21.873 に答える