Linux でコンソール アプリケーションとして実行されるデモ コードをデーモンにまとめようとしています。
SDK は C++ で作成されているため、デーモンが実行する必要のあるすべての処理 (開始、フォーク、デタッチ、std com の syslog へのリダイレクト、シグナルの処理など) を実行する C++ コードを探しました。
だから私はこの例を見つけました:
// daemon.cpp
// ~~~~~~~~~~
//
// Copyright (c) 2003-2011 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#include <boost/asio/io_service.hpp>
#include <boost/asio/ip/udp.hpp>
#include <boost/asio/signal_set.hpp>
#include <boost/array.hpp>
#include <boost/bind.hpp>
#include <ctime>
#include <iostream>
#include <syslog.h>
#include <unistd.h>
using boost::asio::ip::udp;
class udp_daytime_server
{
public:
udp_daytime_server(boost::asio::io_service& io_service)
: socket_(io_service, udp::endpoint(udp::v4(), 13))
{
start_receive();
}
private:
void start_receive()
{
socket_.async_receive_from(
boost::asio::buffer(recv_buffer_), remote_endpoint_,
boost::bind(&udp_daytime_server::handle_receive, this, _1));
}
void handle_receive(const boost::system::error_code& ec)
{
if (!ec || ec == boost::asio::error::message_size)
{
using namespace std; // For time_t, time and ctime;
time_t now = time(0);
std::string message = ctime(&now);
boost::system::error_code ignored_ec;
socket_.send_to(boost::asio::buffer(message),
remote_endpoint_, 0, ignored_ec);
}
start_receive();
}
udp::socket socket_;
udp::endpoint remote_endpoint_;
boost::array<char, 1> recv_buffer_;
};
int main()
{
try
{
boost::asio::io_service io_service;
// Initialise the server before becoming a daemon. If the process is
// started from a shell, this means any errors will be reported back to the
// user.
udp_daytime_server server(io_service);
// Register signal handlers so that the daemon may be shut down. You may
// also want to register for other signals, such as SIGHUP to trigger a
// re-read of a configuration file.
boost::asio::signal_set signals(io_service, SIGINT, SIGTERM);
signals.async_wait(
boost::bind(&boost::asio::io_service::stop, &io_service));
// Inform the io_service that we are about to become a daemon. The
// io_service cleans up any internal resources, such as threads, that may
// interfere with forking.
io_service.notify_fork(boost::asio::io_service::fork_prepare);
// Fork the process and have the parent exit. If the process was started
// from a shell, this returns control to the user. Forking a new process is
// also a prerequisite for the subsequent call to setsid().
if (pid_t pid = fork())
{
if (pid > 0)
{
// We're in the parent process and need to exit.
//
// When the exit() function is used, the program terminates without
// invoking local variables' destructors. Only global variables are
// destroyed. As the io_service object is a local variable, this means
// we do not have to call:
//
// io_service.notify_fork(boost::asio::io_service::fork_parent);
//
// However, this line should be added before each call to exit() if
// using a global io_service object. An additional call:
//
// io_service.notify_fork(boost::asio::io_service::fork_prepare);
//
// should also precede the second fork().
exit(0);
}
else
{
syslog(LOG_ERR | LOG_USER, "First fork failed: %m");
return 1;
}
}
// Make the process a new session leader. This detaches it from the
// terminal.
setsid();
// A process inherits its working directory from its parent. This could be
// on a mounted filesystem, which means that the running daemon would
// prevent this filesystem from being unmounted. Changing to the root
// directory avoids this problem.
chdir("/");
// The file mode creation mask is also inherited from the parent process.
// We don't want to restrict the permissions on files created by the
// daemon, so the mask is cleared.
umask(0);
// A second fork ensures the process cannot acquire a controlling terminal.
if (pid_t pid = fork())
{
if (pid > 0)
{
exit(0);
}
else
{
syslog(LOG_ERR | LOG_USER, "Second fork failed: %m");
return 1;
}
}
// Close the standard streams. This decouples the daemon from the terminal
// that started it.
close(0);
close(1);
close(2);
// We don't want the daemon to have any standard input.
if (open("/dev/null", O_RDONLY) < 0)
{
syslog(LOG_ERR | LOG_USER, "Unable to open /dev/null: %m");
return 1;
}
// Send standard output to a log file.
const char* output = "/tmp/asio.daemon.out";
const int flags = O_WRONLY | O_CREAT | O_APPEND;
const mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
if (open(output, flags, mode) < 0)
{
syslog(LOG_ERR | LOG_USER, "Unable to open output file %s: %m", output);
return 1;
}
// Also send standard error to the same log file.
if (dup(1) < 0)
{
syslog(LOG_ERR | LOG_USER, "Unable to dup output descriptor: %m");
return 1;
}
// Inform the io_service that we have finished becoming a daemon. The
// io_service uses this opportunity to create any internal file descriptors
// that need to be private to the new process.
io_service.notify_fork(boost::asio::io_service::fork_child);
// The io_service can now be used normally.
syslog(LOG_INFO | LOG_USER, "Daemon started");
io_service.run();
syslog(LOG_INFO | LOG_USER, "Daemon stopped");
}
catch (std::exception& e)
{
syslog(LOG_ERR | LOG_USER, "Exception: %s", e.what());
std::cerr << "Exception: " << e.what() << std::endl;
}
}
いずれにせよ、これは最小限のデーモンを起動して実行するのに適しているのでしょうか (udp サーバーコードを置き換えて、独自のコードに置き換えます)、またはデーモン機能を取得する別のアプローチを検討する必要があります。
この例の最後のステップは io_service.run() を呼び出すことであるため、コードのどこから始めればよいかについても混乱しています。
私のコードには 2 つのスレッドがあり、1 つは接続をリッスンし、もう 1 つは保留中の接続を 10 秒ごとに処理します。
ありがとうございました。