2

For solving project euler problem 20 to find the sum of digits in 100! i am running the following program , it is working for factorial of small numbers but not for 100.which data type should i use or is it necessary to use an array for storing the digits?

int rec(int);

void main()
{   
    int f=1,i=1,z,s=0,r,n;

    while(i<=100)
    {
        f=f*i;
        f=rec(f);
        i++;
    }
    n=f;

    while(n!=0)
    {
        r=n%10;
        n=n/10;
        s=s+r;
    }

    printf("\n%d",s);
}

int rec(int t)
{   
    if(t%10==0)
    {
        t=t/10;
        rec(t);
    }
    return t;
}
4

3 に答える 3

4

この型を使用して、100 の近似階乗を計算できますdoubleスターリングの公式を使用することもできます。

n! ≈ sqrt(2*M_PI*n) * pow(n/exp(0),n)

数字を入れるとn!≈ 9*10 157 . つまり、型は 158 桁の 10 進数、つまり ~log 2 (9*10 157 ) = 525 ビットまたは 66 8 ビット バイトを保持できる必要があります。

C の基本的な数値型は十分な大きさではありません。取得が保証されている最大値は 64 ビットです ( を使用する場合unsigned long long)。

だから、nを計算したいなら!C では、長い算術乗算を手動で作成するか、それを実行できる特別なライブラリを使用する必要があります。

この比較的単純なタスクでは、実際に長い乗算を実装し、それを使用して乗算を繰り返すことで階乗値を取得できます。

次のプログラムでは、インプレース乗算アルゴリズムを使用しました。これは、プロセス内の被乗数の 1 つを変更し、最終的にそれを積に置き換えます。このアルゴリズムは、学校で知られている長い乗算から直接導き出すことができます。

このプログラムは、1 から 100 までの整数の階乗を計算します。

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <limits.h>

typedef unsigned char uint8;
typedef unsigned short uint16;
#if UINT_MAX >= 0xFFFFFFFF
typedef unsigned uint32;
#else
typedef unsigned long uint32;
#endif
typedef unsigned uint;

void MulInPlace(uint8* dst/* n bytes */,
                const uint8* src/* n bytes */,
                uint n)
{
  uint c1, c2;

  if (n >= 0xFFFF) abort();

  for (c1 = n - 1; c1 != ~0u; c1--)
  {
    uint16 s = 0;
    uint32 p = 0; // p must be able to store ceil(log2(n))+2*8 bits

    for (c2 = c1; c2 != ~0u; c2--)
    {
      p += dst[c2] * src[c1 - c2];
    }

    dst[c1] = (uint8)(p & 0xFF);

    for (c2 = c1 + 1; c2 < n; c2++)
    {
      p >>= 8;
      s += dst[c2] + (uint8)(p & 0xFF);
      dst[c2] = (uint8)(s & 0xFF);
      s >>= 8;
    }
  }
}

int ByteDivInPlace(uint8* dst/* n bytes */,
                   uint   n,
                   uint8  divisor,
                   uint8* remainder)
{
  uint rem = 0;
  int nonzero = 0;

  while (n)
  {
    rem += dst[n - 1];
    nonzero |= (dst[n - 1] = rem / divisor);
    rem = (rem % divisor) << 8;
    n--;
  }

  if (remainder != NULL)
    *remainder = (uint8)(rem >> 8);

  return nonzero; // 1 if the quotient is non-zero, 0 otherwise
}

void IncInPlace(uint8* dst/* n bytes */,
                uint n)
{
  uint c = 1;
  while (n-- && c)
  {
    c += *dst;
    *dst++ = c & 0xFF;
    c >>= 8;
  }
}

void DestroyingDecimalPrint(uint8* dst, uint n)
{
  uint8 r;
  if (ByteDivInPlace(dst, n, 10, &r))
    DestroyingDecimalPrint(dst, n);
  printf("%d", r);
}

int main(void)
{
  int i;
  uint8 factorial[66];
  uint8 factor[sizeof(factorial)];
  uint8 tmp[sizeof(factorial)];

  // factor = 1
  memset(factor, 0, sizeof(factor));
  factor[0] = 1;

  // factorial = 1
  memcpy(factorial, factor, sizeof(factorial));

  for (i = 1; i <= 100; i++)
  {
    // factorial *= factor
    MulInPlace(factorial, factor, sizeof(factorial));

    // tmp = factorial
    memcpy(tmp, factorial, sizeof(factorial));

    // print i and tmp
    printf("%i! = ", i);
    DestroyingDecimalPrint(tmp, sizeof(tmp));
    printf("\n");

    // factor += 1
    IncInPlace(factor, sizeof(factor));
  }

  return 0;
}

出力 ( ideone ):

1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800
11! = 39916800
12! = 479001600
13! = 6227020800
14! = 87178291200
15! = 1307674368000
16! = 20922789888000
17! = 355687428096000
18! = 6402373705728000
19! = 121645100408832000
20! = 2432902008176640000
21! = 51090942171709440000
22! = 1124000727777607680000
23! = 25852016738884976640000
24! = 620448401733239439360000
25! = 15511210043330985984000000
26! = 403291461126605635584000000
27! = 10888869450418352160768000000
28! = 304888344611713860501504000000
29! = 8841761993739701954543616000000
30! = 265252859812191058636308480000000
31! = 8222838654177922817725562880000000
32! = 263130836933693530167218012160000000
33! = 8683317618811886495518194401280000000
34! = 295232799039604140847618609643520000000
35! = 10333147966386144929666651337523200000000
36! = 371993326789901217467999448150835200000000
37! = 13763753091226345046315979581580902400000000
38! = 523022617466601111760007224100074291200000000
39! = 20397882081197443358640281739902897356800000000
40! = 815915283247897734345611269596115894272000000000
41! = 33452526613163807108170062053440751665152000000000
42! = 1405006117752879898543142606244511569936384000000000
43! = 60415263063373835637355132068513997507264512000000000
44! = 2658271574788448768043625811014615890319638528000000000
45! = 119622220865480194561963161495657715064383733760000000000
46! = 5502622159812088949850305428800254892961651752960000000000
47! = 258623241511168180642964355153611979969197632389120000000000
48! = 12413915592536072670862289047373375038521486354677760000000000
49! = 608281864034267560872252163321295376887552831379210240000000000
50! = 30414093201713378043612608166064768844377641568960512000000000000
51! = 1551118753287382280224243016469303211063259720016986112000000000000
52! = 80658175170943878571660636856403766975289505440883277824000000000000
53! = 4274883284060025564298013753389399649690343788366813724672000000000000
54! = 230843697339241380472092742683027581083278564571807941132288000000000000
55! = 12696403353658275925965100847566516959580321051449436762275840000000000000
56! = 710998587804863451854045647463724949736497978881168458687447040000000000000
57! = 40526919504877216755680601905432322134980384796226602145184481280000000000000
58! = 2350561331282878571829474910515074683828862318181142924420699914240000000000000
59! = 138683118545689835737939019720389406345902876772687432540821294940160000000000000
60! = 8320987112741390144276341183223364380754172606361245952449277696409600000000000000
61! = 507580213877224798800856812176625227226004528988036003099405939480985600000000000000
62! = 31469973260387937525653122354950764088012280797258232192163168247821107200000000000000
63! = 1982608315404440064116146708361898137544773690227268628106279599612729753600000000000000
64! = 126886932185884164103433389335161480802865516174545192198801894375214704230400000000000000
65! = 8247650592082470666723170306785496252186258551345437492922123134388955774976000000000000000
66! = 544344939077443064003729240247842752644293064388798874532860126869671081148416000000000000000
67! = 36471110918188685288249859096605464427167635314049524593701628500267962436943872000000000000000
68! = 2480035542436830599600990418569171581047399201355367672371710738018221445712183296000000000000000
69! = 171122452428141311372468338881272839092270544893520369393648040923257279754140647424000000000000000
70! = 11978571669969891796072783721689098736458938142546425857555362864628009582789845319680000000000000000
71! = 850478588567862317521167644239926010288584608120796235886430763388588680378079017697280000000000000000
72! = 61234458376886086861524070385274672740778091784697328983823014963978384987221689274204160000000000000000
73! = 4470115461512684340891257138125051110076800700282905015819080092370422104067183317016903680000000000000000
74! = 330788544151938641225953028221253782145683251820934971170611926835411235700971565459250872320000000000000000
75! = 24809140811395398091946477116594033660926243886570122837795894512655842677572867409443815424000000000000000000
76! = 1885494701666050254987932260861146558230394535379329335672487982961844043495537923117729972224000000000000000000
77! = 145183092028285869634070784086308284983740379224208358846781574688061991349156420080065207861248000000000000000000
78! = 11324281178206297831457521158732046228731749579488251990048962825668835325234200766245086213177344000000000000000000
79! = 894618213078297528685144171539831652069808216779571907213868063227837990693501860533361810841010176000000000000000000
80! = 71569457046263802294811533723186532165584657342365752577109445058227039255480148842668944867280814080000000000000000000
81! = 5797126020747367985879734231578109105412357244731625958745865049716390179693892056256184534249745940480000000000000000000
82! = 475364333701284174842138206989404946643813294067993328617160934076743994734899148613007131808479167119360000000000000000000
83! = 39455239697206586511897471180120610571436503407643446275224357528369751562996629334879591940103770870906880000000000000000000
84! = 3314240134565353266999387579130131288000666286242049487118846032383059131291716864129885722968716753156177920000000000000000000
85! = 281710411438055027694947944226061159480056634330574206405101912752560026159795933451040286452340924018275123200000000000000000000
86! = 24227095383672732381765523203441259715284870552429381750838764496720162249742450276789464634901319465571660595200000000000000000000
87! = 2107757298379527717213600518699389595229783738061356212322972511214654115727593174080683423236414793504734471782400000000000000000000
88! = 185482642257398439114796845645546284380220968949399346684421580986889562184028199319100141244804501828416633516851200000000000000000000
89! = 16507955160908461081216919262453619309839666236496541854913520707833171034378509739399912570787600662729080382999756800000000000000000000
90! = 1485715964481761497309522733620825737885569961284688766942216863704985393094065876545992131370884059645617234469978112000000000000000000000
91! = 135200152767840296255166568759495142147586866476906677791741734597153670771559994765685283954750449427751168336768008192000000000000000000000
92! = 12438414054641307255475324325873553077577991715875414356840239582938137710983519518443046123837041347353107486982656753664000000000000000000000
93! = 1156772507081641574759205162306240436214753229576413535186142281213246807121467315215203289516844845303838996289387078090752000000000000000000000
94! = 108736615665674308027365285256786601004186803580182872307497374434045199869417927630229109214583415458560865651202385340530688000000000000000000000
95! = 10329978488239059262599702099394727095397746340117372869212250571234293987594703124871765375385424468563282236864226607350415360000000000000000000000
96! = 991677934870949689209571401541893801158183648651267795444376054838492222809091499987689476037000748982075094738965754305639874560000000000000000000000
97! = 96192759682482119853328425949563698712343813919172976158104477319333745612481875498805879175589072651261284189679678167647067832320000000000000000000000
98! = 9426890448883247745626185743057242473809693764078951663494238777294707070023223798882976159207729119823605850588608460429412647567360000000000000000000000
99! = 933262154439441526816992388562667004907159682643816214685929638952175999932299156089414639761565182862536979208272237582511852109168640000000000000000000000
100! = 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
于 2012-10-13T04:15:49.073 に答える
2

オーバーフローを探し、各反復後に値を出力する必要があります。

rec(t); 戻り値を使用しないため、何もしないことに注意してください... you want t = rec(t);.

intは間違いなく短すぎます。試してくださいlong long...それでもオーバーフローする場合は、別のデータ構造が必要です..例:GMPライブラリ。

注:ジョブに「適切な」言語を使用すると、サポートする必要がある範囲についての洞察が得られる場合があります...たとえば、pythonの場合:

>>> import math
>>> math.factorial(100)
93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000L
于 2012-10-12T22:16:20.150 に答える