モデルの概要を保存する
summary_model <- summary(ap1)
必要な部分(線形項の場合)は p.table
要素にあります
summary_model$p.table
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.7457425965 1.480523e-03 3205.4510971 0.000000000
pm10median 0.0002551498 9.384003e-05 2.7189871 0.006548217
so2median 0.0008898646 5.543272e-04 1.6053056 0.108426561
o3median 0.0002212612 2.248015e-04 0.9842516 0.324991826
write.csv(summary_model$p.table, file = 'p_table.csv')
スプライン項が必要な場合、これは
summary_model$s.table
edf Ref.df Chi.sq p-value
s(time) 167.327973 187.143378 1788.8201 4.948832e-259
s(tmpd) 8.337121 8.875807 110.5231 1.412415e-19
必要に応じて、手動で 95% CI を計算し、これらを追加できます。(DFが高いためZスコアを使用します)
p_table <- data.frame(summary_model$p.table)
p_table <- within(p_table, {lci <- Estimate - qnorm(0.975) * Std..Error
uci <- Estimate + qnorm(0.975) * Std..Error})
p_table
Estimate Std..Error z.value Pr...z.. uci lci
(Intercept) 4.7457425965 1.480523e-03 3205.4510971 0.000000000 4.7486443674 4.742841e+00
pm10median 0.0002551498 9.384003e-05 2.7189871 0.006548217 0.0004390729 7.122675e-05
so2median 0.0008898646 5.543272e-04 1.6053056 0.108426561 0.0019763260 -1.965968e-04
o3median 0.0002212612 2.248015e-04 0.9842516 0.324991826 0.0006618641 -2.193416e-04\
コメントを参考に編集
などの多数のゲームモデルがあり、それらを体系的に処理したい場合はap1
、それらをリストに入れて使用するのが適切なアプローチです。ap2
ap3
R
lapply
# create list
model_list <- list(ap1, ap2, ap3)
# give the elements useful names
names(model_list) <- c('ap1','ap2','ap3')
# get the summaries using `lapply
summary_list <- lapply(model_list, summary)
# extract the coefficients from these summaries
p.table_list <- lapply(summary_list, `[[`, 'p.table')
s.table_list <- lapply(summary_list, `[[`, 's.table')
作成したリストが関連するコンポーネントになりました。