私は問題を解決したので、同じ問題を抱えている可能性のある他の人とここで共有しようと思いました。
基本的に、セグメンテーション違反を取り除くには、numpyのimport_array()関数を呼び出す必要があります。
PythonからC++コードを実行するための「高レベル」ビューは次のとおりです。
foo(arg)
いくつかのC++関数のバインディングであるPythonの関数があるとします。を呼び出すときはfoo(myObj)
、Pythonオブジェクト「myObj」をC++コードが動作できる形式に変換するためのコードが必要です。このコードは通常、SWIGやBoost::Pythonなどのツールを使用して半自動で作成されます。(以下の例ではBoost :: Pythonを使用しています。)
さて、これfoo(arg)
はいくつかのC++関数のPythonバインディングです。PyObject
このC++関数は、引数としてジェネリックポインターを受け取ります。このPyObject
ポインタを「同等の」C++オブジェクトに変換するには、C++コードが必要です。私の場合、PythonコードはOpenCVイメージのOpenCVnumpy配列を関数の引数として渡します。C ++の「同等の」形式は、OpenCV C++Matオブジェクトです。PyObject
OpenCVは、ポインター(numpy配列を表す)をC ++マットに変換するためのコードをcv2.cpp(以下に再現)で提供します。intやstringなどのより単純なデータ型は、Boost :: Pythonによって自動的に変換されるため、ユーザーがこれらの変換関数を記述する必要はありません。
PyObject
ポインタが適切なC++形式に変換された後、C++コードがポインタに作用します。データをC++からPythonに返す必要がある場合、データのC++表現を何らかの形式に変換するためにC++コードが必要になる同様の状況が発生しますPyObject
。PyObject
Boost :: Pythonは、対応するpythonフォームに変換する際に残りを処理します。foo(arg)
結果をPythonで返す場合、Pythonで使用できる形式になっています。それでおしまい。
以下のコードは、C ++クラス「ABC」をラップし、Pythonからnumpy配列(画像用)を取り込んでそのメソッド「doSomething」を公開し、OpenCVのC ++マットに変換し、処理を行い、結果をPyObjectに変換する方法を示しています。 *、それをpythonインタープリターに返します。必要な数の関数/メソッドを公開できます(以下のコードのコメントを参照)。
abc.hpp:
#ifndef ABC_HPP
#define ABC_HPP
#include <Python.h>
#include <string>
class ABC
{
// Other declarations
ABC();
ABC(const std::string& someConfigFile);
virtual ~ABC();
PyObject* doSomething(PyObject* image); // We want our python code to be able to call this function to do some processing using OpenCV and return the result.
// Other declarations
};
#endif
abc.cpp:
#include "abc.hpp"
#include "my_cpp_library.h" // This is what we want to make available in python. It uses OpenCV to perform some processing.
#include "numpy/ndarrayobject.h"
#include "opencv2/core/core.hpp"
// The following conversion functions are taken from OpenCV's cv2.cpp file inside modules/python/src2 folder.
static PyObject* opencv_error = 0;
static int failmsg(const char *fmt, ...)
{
char str[1000];
va_list ap;
va_start(ap, fmt);
vsnprintf(str, sizeof(str), fmt, ap);
va_end(ap);
PyErr_SetString(PyExc_TypeError, str);
return 0;
}
class PyAllowThreads
{
public:
PyAllowThreads() : _state(PyEval_SaveThread()) {}
~PyAllowThreads()
{
PyEval_RestoreThread(_state);
}
private:
PyThreadState* _state;
};
class PyEnsureGIL
{
public:
PyEnsureGIL() : _state(PyGILState_Ensure()) {}
~PyEnsureGIL()
{
PyGILState_Release(_state);
}
private:
PyGILState_STATE _state;
};
#define ERRWRAP2(expr) \
try \
{ \
PyAllowThreads allowThreads; \
expr; \
} \
catch (const cv::Exception &e) \
{ \
PyErr_SetString(opencv_error, e.what()); \
return 0; \
}
using namespace cv;
static PyObject* failmsgp(const char *fmt, ...)
{
char str[1000];
va_list ap;
va_start(ap, fmt);
vsnprintf(str, sizeof(str), fmt, ap);
va_end(ap);
PyErr_SetString(PyExc_TypeError, str);
return 0;
}
static size_t REFCOUNT_OFFSET = (size_t)&(((PyObject*)0)->ob_refcnt) +
(0x12345678 != *(const size_t*)"\x78\x56\x34\x12\0\0\0\0\0")*sizeof(int);
static inline PyObject* pyObjectFromRefcount(const int* refcount)
{
return (PyObject*)((size_t)refcount - REFCOUNT_OFFSET);
}
static inline int* refcountFromPyObject(const PyObject* obj)
{
return (int*)((size_t)obj + REFCOUNT_OFFSET);
}
class NumpyAllocator : public MatAllocator
{
public:
NumpyAllocator() {}
~NumpyAllocator() {}
void allocate(int dims, const int* sizes, int type, int*& refcount,
uchar*& datastart, uchar*& data, size_t* step)
{
PyEnsureGIL gil;
int depth = CV_MAT_DEPTH(type);
int cn = CV_MAT_CN(type);
const int f = (int)(sizeof(size_t)/8);
int typenum = depth == CV_8U ? NPY_UBYTE : depth == CV_8S ? NPY_BYTE :
depth == CV_16U ? NPY_USHORT : depth == CV_16S ? NPY_SHORT :
depth == CV_32S ? NPY_INT : depth == CV_32F ? NPY_FLOAT :
depth == CV_64F ? NPY_DOUBLE : f*NPY_ULONGLONG + (f^1)*NPY_UINT;
int i;
npy_intp _sizes[CV_MAX_DIM+1];
for( i = 0; i < dims; i++ )
{
_sizes[i] = sizes[i];
}
if( cn > 1 )
{
/*if( _sizes[dims-1] == 1 )
_sizes[dims-1] = cn;
else*/
_sizes[dims++] = cn;
}
PyObject* o = PyArray_SimpleNew(dims, _sizes, typenum);
if(!o)
{
CV_Error_(CV_StsError, ("The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims));
}
refcount = refcountFromPyObject(o);
npy_intp* _strides = PyArray_STRIDES(o);
for( i = 0; i < dims - (cn > 1); i++ )
step[i] = (size_t)_strides[i];
datastart = data = (uchar*)PyArray_DATA(o);
}
void deallocate(int* refcount, uchar*, uchar*)
{
PyEnsureGIL gil;
if( !refcount )
return;
PyObject* o = pyObjectFromRefcount(refcount);
Py_INCREF(o);
Py_DECREF(o);
}
};
NumpyAllocator g_numpyAllocator;
enum { ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2 };
static int pyopencv_to(const PyObject* o, Mat& m, const char* name = "<unknown>", bool allowND=true)
{
//NumpyAllocator g_numpyAllocator;
if(!o || o == Py_None)
{
if( !m.data )
m.allocator = &g_numpyAllocator;
return true;
}
if( !PyArray_Check(o) )
{
failmsg("%s is not a numpy array", name);
return false;
}
int typenum = PyArray_TYPE(o);
int type = typenum == NPY_UBYTE ? CV_8U : typenum == NPY_BYTE ? CV_8S :
typenum == NPY_USHORT ? CV_16U : typenum == NPY_SHORT ? CV_16S :
typenum == NPY_INT || typenum == NPY_LONG ? CV_32S :
typenum == NPY_FLOAT ? CV_32F :
typenum == NPY_DOUBLE ? CV_64F : -1;
if( type < 0 )
{
failmsg("%s data type = %d is not supported", name, typenum);
return false;
}
int ndims = PyArray_NDIM(o);
if(ndims >= CV_MAX_DIM)
{
failmsg("%s dimensionality (=%d) is too high", name, ndims);
return false;
}
int size[CV_MAX_DIM+1];
size_t step[CV_MAX_DIM+1], elemsize = CV_ELEM_SIZE1(type);
const npy_intp* _sizes = PyArray_DIMS(o);
const npy_intp* _strides = PyArray_STRIDES(o);
bool transposed = false;
for(int i = 0; i < ndims; i++)
{
size[i] = (int)_sizes[i];
step[i] = (size_t)_strides[i];
}
if( ndims == 0 || step[ndims-1] > elemsize ) {
size[ndims] = 1;
step[ndims] = elemsize;
ndims++;
}
if( ndims >= 2 && step[0] < step[1] )
{
std::swap(size[0], size[1]);
std::swap(step[0], step[1]);
transposed = true;
}
if( ndims == 3 && size[2] <= CV_CN_MAX && step[1] == elemsize*size[2] )
{
ndims--;
type |= CV_MAKETYPE(0, size[2]);
}
if( ndims > 2 && !allowND )
{
failmsg("%s has more than 2 dimensions", name);
return false;
}
m = Mat(ndims, size, type, PyArray_DATA(o), step);
if( m.data )
{
m.refcount = refcountFromPyObject(o);
m.addref(); // protect the original numpy array from deallocation
// (since Mat destructor will decrement the reference counter)
};
m.allocator = &g_numpyAllocator;
if( transposed )
{
Mat tmp;
tmp.allocator = &g_numpyAllocator;
transpose(m, tmp);
m = tmp;
}
return true;
}
static PyObject* pyopencv_from(const Mat& m)
{
if( !m.data )
Py_RETURN_NONE;
Mat temp, *p = (Mat*)&m;
if(!p->refcount || p->allocator != &g_numpyAllocator)
{
temp.allocator = &g_numpyAllocator;
m.copyTo(temp);
p = &temp;
}
p->addref();
return pyObjectFromRefcount(p->refcount);
}
ABC::ABC() {}
ABC::~ABC() {}
// Note the import_array() from NumPy must be called else you will experience segmentation faults.
ABC::ABC(const std::string &someConfigFile)
{
// Initialization code. Possibly store someConfigFile etc.
import_array(); // This is a function from NumPy that MUST be called.
// Do other stuff
}
// The conversions functions above are taken from OpenCV. The following function is
// what we define to access the C++ code we are interested in.
PyObject* ABC::doSomething(PyObject* image)
{
cv::Mat cvImage;
pyopencv_to(image, cvImage); // From OpenCV's source
MyCPPClass obj; // Some object from the C++ library.
cv::Mat processedImage = obj.process(cvImage);
return pyopencv_from(processedImage); // From OpenCV's source
}
BoostPythonを使用してPythonモジュールを作成するためのコード。私はこれと次のMakefileをhttp://jayrambhia.wordpress.com/tag/boost/から取得しました:
pysomemodule.cpp:
#include <string>
#include<boost/python.hpp>
#include "abc.hpp"
using namespace boost::python;
BOOST_PYTHON_MODULE(pysomemodule)
{
class_<ABC>("ABC", init<const std::string &>())
.def(init<const std::string &>())
.def("doSomething", &ABC::doSomething) // doSomething is the method in class ABC you wish to expose. One line for each method (or function depending on how you structure your code). Note: You don't have to expose everything in the library, just the ones you wish to make available to python.
;
}
そして最後に、Makefile(Ubuntuで正常にコンパイルされましたが、最小限の調整で他の場所でも機能するはずです)。
PYTHON_VERSION = 2.7
PYTHON_INCLUDE = /usr/include/python$(PYTHON_VERSION)
# location of the Boost Python include files and library
BOOST_INC = /usr/local/include/boost
BOOST_LIB = /usr/local/lib
OPENCV_LIB = `pkg-config --libs opencv`
OPENCV_CFLAGS = `pkg-config --cflags opencv`
MY_CPP_LIB = lib_my_cpp_library.so
TARGET = pysomemodule
SRC = pysomemodule.cpp abc.cpp
OBJ = pysomemodule.o abc.o
$(TARGET).so: $(OBJ)
g++ -shared $(OBJ) -L$(BOOST_LIB) -lboost_python -L/usr/lib/python$(PYTHON_VERSION)/config -lpython$(PYTHON_VERSION) -o $(TARGET).so $(OPENCV_LIB) $(MY_CPP_LIB)
$(OBJ): $(SRC)
g++ -I$(PYTHON_INCLUDE) -I$(BOOST_INC) $(OPENCV_CFLAGS) -fPIC -c $(SRC)
clean:
rm -f $(OBJ)
rm -f $(TARGET).so
ライブラリを正常にコンパイルすると、ディレクトリに「pysomemodule.so」というファイルが作成されます。このlibファイルをPythonインタープリターがアクセスできる場所に置きます。次に、このモジュールをインポートして、上記のクラス「ABC」のインスタンスを次のように作成できます。
import pysomemodule
foo = pysomemodule.ABC("config.txt") # This will create an instance of ABC
これで、OpenCV numpy配列イメージが与えられた場合、次を使用してC++関数を呼び出すことができます。
processedImage = foo.doSomething(image) # Where the argument "image" is a OpenCV numpy image.
バインディングを作成するには、Boost Python、Numpy dev、およびPythondevライブラリが必要になることに注意してください。
次の2つのリンクにあるNumPyのドキュメントは、変換コードで使用されたメソッドと、import_array()を呼び出す必要がある理由を理解するのに特に役立ちます。特に、公式のnumpyドキュメントは、OpenCVのPythonバインディングコードを理解するのに役立ちます。
http://dsnra.jpl.nasa.gov/software/Python/numpydoc/numpy-13.html
http://docs.scipy.org/doc/numpy/user/c-info.how-to-extend.html
お役に立てれば。