次の例のように、基本的なデータ変更を行っているときにこの動作に遭遇しました。
In [55]: import pandas as pd
In [56]: import numpy as np
In [57]: rng = pd.date_range('1/1/2000', periods=10, freq='4h')
In [58]: lvls = ['A','A','A','B','B','B','C','C','C','C']
In [59]: df = pd.DataFrame({'TS': rng, 'V' : np.random.randn(len(rng)), 'L' : lvls})
In [60]: df
Out[60]:
L TS V
0 A 2000-01-01 00:00:00 -1.152371
1 A 2000-01-01 04:00:00 -2.035737
2 A 2000-01-01 08:00:00 -0.493008
3 B 2000-01-01 12:00:00 -0.279055
4 B 2000-01-01 16:00:00 -0.132386
5 B 2000-01-01 20:00:00 0.584091
6 C 2000-01-02 00:00:00 -0.297270
7 C 2000-01-02 04:00:00 -0.949525
8 C 2000-01-02 08:00:00 0.517305
9 C 2000-01-02 12:00:00 -1.142195
問題:
In [61]: df['TS'].min()
Out[61]: 31969-04-01 00:00:00
In [62]: df['TS'].max()
Out[62]: 31973-05-10 00:00:00
これは問題ないように見えますが:
In [63]: df['V'].max()
Out[63]: 0.58409076701429163
In [64]: min(df['TS'])
Out[64]: <Timestamp: 2000-01-01 00:00:00>
groupby の後に集計する場合:
In [65]: df.groupby('L').min()
Out[65]:
TS V
L
A 9.466848e+17 -2.035737
B 9.467280e+17 -0.279055
C 9.467712e+17 -1.142195
In [81]: val = df.groupby('L').agg('min')['TS']['A']
In [82]: type(val)
Out[82]: numpy.float64
どうやらこの特定のケースでは、pd.Series 関数の引数として頻度日時インデックスを使用することに関係があります。
In [76]: rng.min()
Out[76]: <Timestamp: 2000-01-01 00:00:00>
In [77]: ts = pd.Series(rng)
In [78]: ts.min()
Out[78]: 31969-04-01 00:00:00
In [79]: type(ts.min())
Out[79]: numpy.datetime64
ただし、私の最初の問題は、 pd.read_csv() を介して文字列から解析されたタイムスタンプシリーズの最小/最大にありました
私は何を間違っていますか?