次の定義を前提としています (最初の 2 つはhttp://www.cis.upenn.edu/~bcpierce/sf/Basics.htmlから取得したものです)。
Fixpoint beq_nat (n m : nat) : bool :=
match n with
| O => match m with
| O => true
| S m' => false
end
| S n' => match m with
| O => false
| S m' => beq_nat n' m'
end
end.
Fixpoint ble_nat (n m : nat) : bool :=
match n with
| O => true
| S n' =>
match m with
| O => false
| S m' => ble_nat n' m'
end
end.
Definition blt_nat (n m : nat) : bool :=
if andb (ble_nat n m) (negb (beq_nat n m)) then true else false.
次のことを証明したいと思います。
Lemma blt_nat_flip0 : forall (x y : nat),
blt_nat x y = false -> ble_nat y x = true.
Lemma blt_nat_flip : forall (x y : nat),
blt_nat x y = false -> beq_nat x y = false -> blt_nat y x = true.
私が到達できた最も遠いところは、 とblt_nat_flip
仮定して証明することblt_nat_flip0
です。私は多くの時間を費やし、ほとんどそこにいますが、全体的には必要以上に複雑に見えます. 2つの補題を証明する方法について、より良いアイデアを持っている人はいますか?
これまでの私の試みは次のとおりです。
Lemma beq_nat_symmetric : forall (x y : nat),
beq_nat x y = beq_nat y x.
Proof.
intros x. induction x.
intros y. simpl. destruct y.
reflexivity. reflexivity.
intros y. simpl. destruct y.
reflexivity.
simpl. apply IHx.
Qed.
Lemma and_negb_false : forall (b1 b2 : bool),
b2 = false -> andb b1 (negb b2) = b1.
Proof.
intros. rewrite -> H. unfold negb. destruct b1.
simpl. reflexivity.
simpl. reflexivity.
Qed.
Lemma blt_nat_flip0 : forall (x y : nat),
blt_nat x y = false -> ble_nat y x = true.
Proof.
intros x.
induction x.
intros. destruct y.
simpl. reflexivity.
simpl. inversion H.
intros. destruct y. simpl. reflexivity.
simpl. rewrite -> IHx. reflexivity.
(* I am giving up for now at this point ... *)
Admitted.
Lemma blt_nat_flip : forall (x y : nat),
blt_nat x y = false -> beq_nat x y = false ->
blt_nat y x = true.
Proof.
intros.
unfold blt_nat.
rewrite -> beq_nat_symmetric. rewrite -> H0.
rewrite -> and_negb_false.
replace (ble_nat y x) with true.
reflexivity.
rewrite -> blt_nat_flip0. reflexivity. apply H. reflexivity.
Qed.