再帰マージソートを行う次の arduino コードがあります。この 8192B SRAM に入力できる配列要素の最大量を計算する方法を決定する必要があります。配列要素の数は、この void setup() で設定されます
int16_t Test_len = 64;
私はこれを自分で解決したいと思っていましたが、何時間も後に絶望的になり、インフルエンザにかかったためにこの講義を欠席しました.
コード全体のコピー。
#include <Arduino.h>
#include <mem_syms.h>
// some formatting routines to indent our messages to make it easier
// to trace the recursion.
uint8_t indent_pos = 0;
const uint8_t indent_amt = 2;
void indent_in() {
if ( indent_pos <= 32 ) {
indent_pos ++;
}
}
void indent_out() {
if ( indent_pos >= indent_amt ) {
indent_pos --;
}
}
void indent() {
for (uint8_t i=0; i < indent_pos * indent_amt; i++) {
Serial.print(" ");
}
}
// print out memory use info, s is a simple descriptive string
void mem_info(char *s) {
indent();
Serial.print(s);
Serial.print(" Stack: ");
Serial.print(STACK_SIZE);
Serial.print(" Heap: ");
Serial.print(HEAP_SIZE);
Serial.print(" Avail: ");
Serial.print(AVAIL_MEM);
Serial.println();
}
// call this after a malloc to confirm that the malloc worked, and
// if not, display the message s and enter a hard loop
void assert_malloc_ok(void * mem_ptr, char *s) {
if ( ! mem_ptr ) {
Serial.print("Malloc failed. ");
Serial.print(s);
Serial.println();
while ( 1 ) { }
}
}
// call this on entry to a procedure to assue that at least required amt of
// memory is available in the free area between stack and heap if not, display
// the message s and enter a hard loop
void assert_free_mem_ok(uint16_t required_amt, char *s) {
if ( AVAIL_MEM < required_amt ) {
Serial.print("Insufficient Free Memory: ");
Serial.print(s);
Serial.print(" require ");
Serial.print(required_amt);
Serial.print(", have ");
Serial.print(AVAIL_MEM);
Serial.println();
while ( 1 ) { }
}
}
void merge(int16_t *Left, int16_t Left_len, int16_t *Right, int16_t Right_len,
int16_t *S) {
// position of next element to be processed
int Left_pos = 0;
int Right_pos = 0;
// position of next element of S to be specified
// note: S_pos = Left_pos+Right_pos
int S_pos = 0;
// false, take from right, true take from left
int pick_from_left = 0;
while ( S_pos < Left_len + Right_len ) {
// pick the smallest element at the head of the lists
// move smallest of Left[Left_pos] and Right[Right_pos] to S[S_pos]
if ( Left_pos >= Left_len ) {
pick_from_left = 0;
}
else if ( Right_pos >= Right_len ) {
pick_from_left = 1;
}
else if ( Left[Left_pos] <= Right[Right_pos] ) {
pick_from_left = 1;
}
else {
pick_from_left = 0;
}
if ( pick_from_left ) {
S[S_pos] = Left[Left_pos];
Left_pos++;
S_pos++;
}
else {
S[S_pos] = Right[Right_pos];
Right_pos++;
S_pos++;
}
}
}
// sort in place, i.e. A will be reordered
void merge_sort(int16_t *A, int16_t A_len) {
indent_in();
indent();
Serial.print("Entering merge sort: array addr ");
Serial.print( (int) A );
Serial.print(" len ");
Serial.println( A_len);
mem_info("");
assert_free_mem_ok(128, "merge_sort");
if ( A_len < 2 ) {
indent_out();
return;
}
if ( A_len == 2 ) {
if ( A[0] > A[1] ) {
int temp = A[0];
A[0] = A[1];
A[1] = temp;
}
indent_out();
return;
}
// split A in half, sort left, sort right, then merge
// left half is: A[0], ..., A[split_point-1]
// right half is: A[split_point], ..., A[A_len-1]
int split_point = A_len / 2;
indent();
Serial.println("Doing left sort");
merge_sort(A, split_point);
mem_info("After left sort");
indent();
Serial.println("Doing right sort");
merge_sort(A+split_point, A_len-split_point);
mem_info("After right sort");
// don't need the merging array S until this point
int *S = (int *) malloc( A_len * sizeof(int) );// source of 10 bytes accumulation in heap
assert_malloc_ok(S, "Cannot get merge buffer");
mem_info("Doing merge");
merge(A, split_point, A+split_point, A_len-split_point, S);
for (int i=0; i < A_len; i++) {
A[i] = S[i];
}
// now we are done with it
free(S);
mem_info("After free");
indent_out();
}
void setup() {
Serial.begin(9600);
// int *bad_news = (int *) malloc(4000);
mem_info("********* THIS IS THE BEGINNING *********");
randomSeed(analogRead(0));
int16_t Test_len = 64;
int16_t Test[Test_len];
Serial.print("In: ");
for (int16_t i=0; i < Test_len; i++) {
Test[i] = random(0, 100);
if ( 1 ) {
Serial.print(Test[i]);
Serial.print(" ");
}
}
Serial.println();
merge_sort(Test, Test_len);
if ( 1 ) {
Serial.print("Out: ");
for (int16_t i=0; i < Test_len; i++) {
if ( i < Test_len-1 && Test[i] > Test[i+1] ) {
Serial.print("Out of order!!");
}
Serial.print(Test[i]);
Serial.print(" ");
}
Serial.println();
}
}
void loop() {
}