事前注文パス情報を含むツリーの複数行表現を返すバイナリ検索ツリーの再帰文字列メソッドを作成しようとしています。
各ノードの前には、ルートからそのノードに至るパスを示す一連の<および>文字を付ける必要があります。連続して呼び出すたびに1文字ずつ拡張される文字列プレフィックスパラメータを使用する方法がわかりません。
メソッドは、この例を再現できる必要があります。
木:
15
/ \
12 18
/ / \
10 16 20
\ \
11 17
期待される印刷出力:
15
<12
<<10
<<>11
>18
><16
><>17
>>20
私は再帰に不慣れで、これまでのところ、コードを何時間もいじった後、実際の印刷出力は十分に閉じていません。
18
<17
<10
>15
<11
>12
16
20
正しく機能するツリーノードクラスは次のとおりです。
/**
* A single binary tree node.
* <p>
* Each node has both a left or right child, which can be null.
*/
public class TreeNode<E> {
private E data;
private TreeNode<E> left;
private TreeNode<E> right;
/**
* Constructs a new node with the given data and references to the
* given left and right nodes.
*/
public TreeNode(E data, TreeNode<E> left, TreeNode<E> right) {
this.data = data;
this.left = left;
this.right = right;
}
/**
* Constructs a new node containing the given data.
* Its left and right references will be set to null.
*/
public TreeNode(E data) {
this(data, null, null);
}
/** Returns the item currently stored in this node. */
public E getData() {
return data;
}
/** Overwrites the item stored in this Node with the given data item. */
public void setData(E data) {
this.data = data;
}
/**
* Returns this Node's left child.
* If there is no left left, returns null.
*/
public TreeNode<E> getLeft() {
return left;
}
/** Causes this Node to point to the given left child Node. */
public void setLeft(TreeNode<E> left) {
this.left = left;
}
/**
* Returns this nodes right child.
* If there is no right child, returns null.
*/
public TreeNode<E> getRight() {
return right;
}
/** Causes this Node to point to the given right child Node. */
public void setRight(TreeNode<E> right) {
this.right = right;
}
}
下部にtoFullString()メソッドを使用したバイナリ検索ツリークラスは次のとおりです。
import java.util.*;
/**
* A binary search tree (BST) is a sorted ADT that uses a binary
* tree to keep all elements in sorted order. If the tree is
* balanced, performance is very good: O(n lg n) for most operations.
* If unbalanced, it performs more like a linked list: O(n).
*/
public class BinarySearchTree<E extends Comparable<E>> {
private TreeNode<E> root = null;
private int size = 0;
/** Creates an empty tree. */
public BinarySearchTree() {
}
public BinarySearchTree(Collection<E> col) {
List<E> list = new ArrayList<E>(col);
Collections.shuffle(list);
for (int i = 0; i < list.size() ; i++) {
add(list.get(i));
}
}
/** Adds the given item to this BST. */
public void add(E item) {
this.size++;
if (this.root == null) {
//tree is empty, so just add item
this.root = new TreeNode<E>(item);
}else {
//find where to insert, with pointer to parent node
TreeNode<E> parent = null;
TreeNode<E> curr = this.root;
boolean wentLeft = true;
while (curr != null) { //will execute at least once
parent = curr;
if (item.compareTo(curr.getData()) <= 0) {
curr = curr.getLeft();
wentLeft = true;
}else {
curr = curr.getRight();
wentLeft = false;
}
}
//now add new node on appropriate side of parent
curr = new TreeNode<E>(item);
if (wentLeft) {
parent.setLeft(curr);
}else {
parent.setRight(curr);
}
}
}
/** Returns the greatest (earliest right-most node) of the given tree. */
private E findMax(TreeNode<E> n) {
if (n == null) {
return null;
}else if (n.getRight() == null) {
//can't go right any more, so this is max value
return n.getData();
}else {
return findMax(n.getRight());
}
}
/**
* Returns item from tree that is equivalent (according to compareTo)
* to the given item. If item is not in tree, returns null.
*/
public E get(E item) {
return get(item, this.root);
}
/** Finds it in the subtree rooted at the given node. */
private E get(E item, TreeNode<E> node) {
if (node == null) {
return null;
}else if (item.compareTo(node.getData()) < 0) {
return get(item, node.getLeft());
}else if (item.compareTo(node.getData()) > 0) {
return get(item, node.getRight());
}else {
//found it!
return node.getData();
}
}
/**
* Removes the first equivalent item found in the tree.
* If item does not exist to be removed, throws IllegalArgumentException().
*/
public void remove(E item) {
this.root = remove(item, this.root);
}
private TreeNode<E> remove(E item, TreeNode<E> node) {
if (node == null) {
//didn't find item
throw new IllegalArgumentException(item + " not found in tree.");
}else if (item.compareTo(node.getData()) < 0) {
//go to left, saving resulting changes made to left tree
node.setLeft(remove(item, node.getLeft()));
return node;
}else if (item.compareTo(node.getData()) > 0) {
//go to right, saving any resulting changes
node.setRight(remove(item, node.getRight()));
return node;
}else {
//found node to be removed!
if (node.getLeft() == null && node.getRight() == null) {
//leaf node
return null;
}else if (node.getRight() == null) {
//has only a left child
return node.getLeft();
}else if (node.getLeft() == null) {
//has only a right child
return node.getRight();
}else {
//two children, so replace the contents of this node with max of left tree
E max = findMax(node.getLeft()); //get max value
node.setLeft(remove(max, node.getLeft())); //and remove its node from tree
node.setData(max);
return node;
}
}
}
/** Returns the number of elements currently in this BST. */
public int size() {
return this.size;
}
/**
* Returns a single-line representation of this BST's contents.
* Specifically, this is a comma-separated list of all elements in their
* natural Comparable ordering. The list is surrounded by [] characters.
*/
@Override
public String toString() {
return "[" + toString(this.root) + "]";
}
private String toString(TreeNode<E> n) {
//would have been simpler to use Iterator... but not implemented yet.
if (n == null) {
return "";
}else {
String str = "";
str += toString(n.getLeft());
if (!str.isEmpty()) {
str += ", ";
}
str += n.getData();
if (n.getRight() != null) {
str += ", ";
str += toString(n.getRight());
}
return str;
}
}
public String toFullString() {
StringBuilder sb = new StringBuilder();
toFullString(root, sb);
return sb.toString();
}
/**
* Preorder traversal of the tree that builds a string representation
* in the given StringBuilder.
* @param n root of subtree to be traversed
* @param sb StringBuilder in which to create a string representation
*/
private void toFullString(TreeNode<E> n, StringBuilder sb)
{
if (n == null)
{
return;
}
sb.append(n.getData().toString());
sb.append("\n");
if (n.getLeft() != null) {
sb.append("<");
} else if (n.getRight() != null) {
sb.append(">");
}
if (n.getLeft() != null || n.getRight() != null)
{
toFullString(n.getLeft(), sb);
toFullString(n.getRight(), sb);
}
}
/**
* Tests the BST.
*/
public static void main(String[] args) {
Collection collection = new ArrayList();
collection.add(15);
collection.add(12);
collection.add(18);
collection.add(10);
collection.add(16);
collection.add(20);
collection.add(11);
collection.add(17);
BinarySearchTree bst = new BinarySearchTree(collection);
//System.out.println(bst);
String temp = bst.toFullString();
System.out.println(temp);
}
}
再帰的なtoFullStringメソッドに関するヘルプは大歓迎です。