2

そこで昨年、ローレンツ方程式とルンゲ クッタ法を使って微分方程式を解くカオスを示すプログラムをコース用に C で書きました。

私は最近、これを再検討し、粒子の軌跡を引き出すことができるプログラムを作成したいと決めました. 私はこれをうまく機能させましたが、ユーザーが粒子の開始位置やその他のパラメーター (私の場合は a、b、r) などのパラメーターを入力できるように、これを拡張したいと考えています。現在、プログラムが実行されるとすぐに軌跡が描画されますが、ユーザーがパラメーターをいくつかのテキストボックスに入力してからボタンを押すまで、これを遅らせたいと思います。これを行うには、新しいクラスを作成して現在のコードをそこに配置し、メインの .cs ファイルで btn1_Click メソッドの下でこれを呼び出す必要があると考えました。しかし、主にどうすればいいのかわからないという点で、これにはかなりの問題があります。これまでの私の最善の試みでは、「createGraphics()」を含む行でエラーが発生しました つまり、クラス ファイルにその定義がありません。クラスの上部にある使用部分の上部には、正常に機能したメインファイルと同じ参照がすべてあります。

また、誰かが私のコードに関するフィードバック (つまり、悪い慣行や私が物事を複雑にしすぎた場所) や、コードを改善するための提案をくれる場合は、非常に感謝しています。助けてください、私は答えるために最善を尽くします!

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace Lorenz_chaos
{
public partial class Form1 : Form
{
    public Form1()
    {
        InitializeComponent();
    }
        private void Form1_Paint(object sender, PaintEventArgs e)
    {
        double a = 10, b = (8 / 3), r = 28;     //standard values for lorenz model

        /*m defines the number of iterations of the for loop so the number of lines drawn
        good idea to keep m inversely proportional to dt (the time interval). A smaller dt will
        mean smaller lines so smoother overall drawing m=50000 and dt=0.0005 is a good starting point
        that demonstrates chaos well*/
        double m = 500000, dt = 0.00005;

        //EVOLUTION VALUE FOR RUNGE_KUTTA METHOD
        //values for first particle
        double y11, y12, y13;
        double y21, y22, y23;
        double y31, y32, y33;
        double y41, y42, y43;
        double y51, y52, y53;
        double xi, yi, xf, yf;           //coordinates for drawing particle 1 trajectory

        double f10, f11, f12, f13;      //function values to be calculated, 
        double f20, f21, f22, f23;      //for fxy (x>1) these are intermediate fn calculations at different
        double f30, f31, f32, f33;      //times in Runga Kutta

        //values for second particle
        double z11, z12, z13;
        double z21, z22, z23;
        double z31, z32, z33;
        double z41, z42, z43;
        double z51, z52, z53;
        double ai, bi, af, bf;          //coordinates for drawing particle 2 trajectory (these are badly named...)

        double g10, g11, g12, g13;      //equivalent of f values for particle 2 
        double g20, g21, g22, g23;
        double g30, g31, g32, g33;

        //OTHER NEEDED QUANTITIES
        int i;          //for loop iteration integer
        int k1 = 20;    //scaling factors to make drawing fill form
        int k2 = 9;
        int y0 = 450;   //offset values to centre drawing on form
        int x0 = 550;
        int start = 10;   //starting position for calculations
        double diff = 0.01;//initial displacement between two particles

        //starting positions for particles            
        y11 = start;//particle 1
        y12 = start;
        y13 = start;

        z11 = start + diff;//particle 2
        z12 = start + diff;
        z13 = start + diff;

        //initial coords for particles at t=0
        xi = (y11) * k1 + x0;
        yi = (y12) * k2 + y0;
        ai = (z11) * k1 + x0;
        bi = (z12) * k2 + y0;

        for (i = 1; i <= m; i++)
        {
            f10 = a * (y12 - y11);
            f20 = r * y11 - y12 - y11 * y13;
            f30 = y11 * y12 - b * y13;

            y21 = y11 + f10 * dt / 2;               //finding y1 y2 y3 at the first
            y22 = y12 + f20 * dt / 2;               //fraction of dt
            y23 = y13 + f30 * dt / 2;

            f11 = a * (y22 - y21);
            f21 = r * y21 - y22 - y21 * y23;
            f31 = y21 * y22 - b * y23;

            y31 = y11 + f11 * dt / 2;               //finding y1 y2 y3 at the second
            y32 = y12 + f21 * dt / 2;               //fraction of dt
            y33 = y13 + f31 * dt / 2;

            f12 = a * (y32 - y31);
            f22 = r * y31 - y32 - y31 * y33;
            f32 = y31 * y32 - b * y33;

            y41 = y11 + f12 * dt;               //finding y1 y2 y3 at the third
            y42 = y12 + f22 * dt;               //fraction of dt
            y43 = y13 + f32 * dt;

            f13 = a * (y42 - y41);
            f23 = r * y41 - y42 - y41 * y43;
            f33 = y41 * y42 - b * y43;

            y51 = y11 + (f10 + 2 * f11 + 2 * f12 + f13) * dt / 6; //final y values at y(t+dt)
            y52 = y12 + (f20 + 2 * f21 + 2 * f22 + f23) * dt / 6; //then to be repesated in for loop for all steps
            y53 = y13 + (f30 + 2 * f31 + 2 * f32 + f33) * dt / 6;

            xf = (y51) * k1 + x0;
            yf = (y52) * k2 + y0;

            //second particle calculation
            g10 = a * (z12 - z11);
            g20 = r * z11 - z12 - z11 * z13;
            g30 = z11 * z12 - b * z13;

            z21 = z11 + g10 * dt / 2;               //finding y1 y2 y3 at the first
            z22 = z12 + g20 * dt / 2;               //fraction of dt
            z23 = z13 + g30 * dt / 2;

            g11 = a * (z22 - z21);
            g21 = r * z21 - z22 - z21 * z23;
            g31 = z21 * z22 - b * z23;

            z31 = z11 + g11 * dt / 2;               //finding y1 y2 y3 at the second
            z32 = z12 + g21 * dt / 2;               //fraction of dt
            z33 = z13 + g31 * dt / 2;

            g12 = a * (z32 - z31);
            g22 = r * z31 - z32 - z31 * z33;
            g32 = z31 * z32 - b * z33;

            z41 = z11 + g12 * dt;               //finding y1 y2 y3 at the third
            z42 = z12 + g22 * dt;               //fraction of dt
            z43 = z13 + g32 * dt;

            g13 = a * (z42 - z41);
            g23 = r * z41 - z42 - z41 * z43;
            g33 = z41 * z42 - b * z43;

            z51 = z11 + (g10 + 2 * g11 + 2 * g12 + g13) * dt / 6; //final y values at y(t+dt)
            z52 = z12 + (g20 + 2 * g21 + 2 * g22 + g23) * dt / 6; //then to be repesated in for loop for all steps
            z53 = z13 + (g30 + 2 * g31 + 2 * g32 + g33) * dt / 6;

            af = (z51) * k1 + x0;
            bf = (z52) * k2 + y0;


            //DRAWING LINE JUST CALCULATED
            System.Drawing.Graphics graphicsObj;

            graphicsObj = this.CreateGraphics();

            Pen myPen = new Pen(System.Drawing.Color.Red, 1);

            //myPen.DashStyle = System.Drawing.Drawing2D.DashStyle.DashDotDot;

            graphicsObj.DrawLine(myPen, (int)xi, (int)yi, (int)xf, (int)yf);

            myPen.Color = System.Drawing.Color.RoyalBlue;

            graphicsObj.DrawLine(myPen, (int)ai, (int)bi, (int)af, (int)bf);

            //REDEFINING COORDS AND VALUES FOR NEXT LOOP
            //first particle
            xi = (y51) * k1 + x0;
            yi = (y52) * k2 + y0;
            y11 = y51;
            y12 = y52;
            y13 = y53;

            //second particle
            ai = (z51) * k1 + x0;
            bi = (z52) * k2 + y0;
            z11 = z51;
            z12 = z52;
            z13 = z53;

            /*even at 1 the below makes the program far too slow, need an alternative
             intention was for it to allow user to see the particle trajectories better*/
            //System.Threading.Thread.Sleep(1);
        }

    }


}
}
4

1 に答える 1

1

のコードをForm1_Paint別のメソッドに入れます。たとえば、DrawLorenzChaos(Graphics graphicsObj , double a, double b, double r). フォームにパラメータを設定するときは、いくつかのbool値を に設定するだけtrueです。コードを確認する

private void Form1_Paint(object sender, PaintEventArgs e)
{  

     if(startDrawing)
           DrawLorenzChaos(e.Graphics, aVal, bVal, rVal);
}

また、DrawLorenzChaos メソッドでは、次の 2 行を削除するだけです。

System.Drawing.Graphics graphicsObj;

graphicsObj = this.CreateGraphics();

編集:このコードを最初から試すことができ、徐々に改善できます。これが私が行う方法です (より良い同期を追加しますが、基本的にはこれです)。コードを試すには、ボタンが 1 つと、サイズ (1000,1000) の PictureBox が 1 つ必要です。開始位置を少し変更したことに注意してください。

基本的に、ここでは別のスレッドがビットマップにローレンツ カオスを描画します。そのビットマップは、各行が個別のスレッドで描画された後、UI スレッドの PictureBox に描画されます。ビットマップへのアクセスを制御するミューテックスがあります。

public partial class Form1 : Form
{
    Bitmap offScrBuff;
    Mutex mut;
    int index = 0;
    public Form1()
    {
        InitializeComponent();
        offScrBuff = new Bitmap(1000, 1000);
        mut = new Mutex();
        pictureBox1.Paint += new PaintEventHandler(pictureBox1_Paint);
        button1.Click += new System.EventHandler(this.button1_Click);
    }

    void pictureBox1_Paint(object sender, PaintEventArgs e)
    {
        mut.WaitOne();
        e.Graphics.DrawImage(offScrBuff, 0, 0);
        mut.ReleaseMutex();
    }

    void DrawLorenzChaos(double a, double b, double r)
    {
        //double a = 10, b = (8.0 / 3.0), r = 28;     //standard values for lorenz model

        /*m defines the number of iterations of the for loop so the number of lines drawn
        good idea to keep m inversely proportional to dt (the time interval). A smaller dt will
        mean smaller lines so smoother overall drawing m=50000 and dt=0.0005 is a good starting point
        that demonstrates chaos well*/
        double m = 500000, dt = 0.00005;

        //EVOLUTION VALUE FOR RUNGE_KUTTA METHOD
        //values for first particle
        double y11, y12, y13;
        double y21, y22, y23;
        double y31, y32, y33;
        double y41, y42, y43;
        double y51, y52, y53;
        double xi, yi, xf, yf;           //coordinates for drawing particle 1 trajectory

        double f10, f11, f12, f13;      //function values to be calculated, 
        double f20, f21, f22, f23;      //for fxy (x>1) these are intermediate fn calculations at different
        double f30, f31, f32, f33;      //times in Runga Kutta

        //values for second particle
        double z11, z12, z13;
        double z21, z22, z23;
        double z31, z32, z33;
        double z41, z42, z43;
        double z51, z52, z53;
        double ai, bi, af, bf;          //coordinates for drawing particle 2 trajectory (these are badly named...)

        double g10, g11, g12, g13;      //equivalent of f values for particle 2 
        double g20, g21, g22, g23;
        double g30, g31, g32, g33;

        //OTHER NEEDED QUANTITIES
        int i;          //for loop iteration integer
        int k1 = 20;    //scaling factors to make drawing fill form
        int k2 = 9;
        int y0 = 280;   //offset values to centre drawing on form
        int x0 = 400;
        int start = 10;   //starting position for calculations
        double diff = 0.01;//initial displacement between two particles

        //starting positions for particles            
        y11 = start;//particle 1
        y12 = start;
        y13 = start;

        z11 = start + diff;//particle 2
        z12 = start + diff;
        z13 = start + diff;

        //initial coords for particles at t=0
        xi = (y11) * k1 + x0;
        yi = (y12) * k2 + y0;
        ai = (z11) * k1 + x0;
        bi = (z12) * k2 + y0;
        for (i = 1; i <= m; i++)
        {
            f10 = a * (y12 - y11);
            f20 = r * y11 - y12 - y11 * y13;
            f30 = y11 * y12 - b * y13;

            y21 = y11 + f10 * dt / 2;               //finding y1 y2 y3 at the first
            y22 = y12 + f20 * dt / 2;               //fraction of dt
            y23 = y13 + f30 * dt / 2;

            f11 = a * (y22 - y21);
            f21 = r * y21 - y22 - y21 * y23;
            f31 = y21 * y22 - b * y23;

            y31 = y11 + f11 * dt / 2;               //finding y1 y2 y3 at the second
            y32 = y12 + f21 * dt / 2;               //fraction of dt
            y33 = y13 + f31 * dt / 2;

            f12 = a * (y32 - y31);
            f22 = r * y31 - y32 - y31 * y33;
            f32 = y31 * y32 - b * y33;

            y41 = y11 + f12 * dt;               //finding y1 y2 y3 at the third
            y42 = y12 + f22 * dt;               //fraction of dt
            y43 = y13 + f32 * dt;

            f13 = a * (y42 - y41);
            f23 = r * y41 - y42 - y41 * y43;
            f33 = y41 * y42 - b * y43;

            y51 = y11 + (f10 + 2 * f11 + 2 * f12 + f13) * dt / 6; //final y values at y(t+dt)
            y52 = y12 + (f20 + 2 * f21 + 2 * f22 + f23) * dt / 6; //then to be repesated in for loop for all steps
            y53 = y13 + (f30 + 2 * f31 + 2 * f32 + f33) * dt / 6;

            xf = (y51) * k1 + x0;
            yf = (y52) * k2 + y0;

            //second particle calculation
            g10 = a * (z12 - z11);
            g20 = r * z11 - z12 - z11 * z13;
            g30 = z11 * z12 - b * z13;

            z21 = z11 + g10 * dt / 2;               //finding y1 y2 y3 at the first
            z22 = z12 + g20 * dt / 2;               //fraction of dt
            z23 = z13 + g30 * dt / 2;

            g11 = a * (z22 - z21);
            g21 = r * z21 - z22 - z21 * z23;
            g31 = z21 * z22 - b * z23;

            z31 = z11 + g11 * dt / 2;               //finding y1 y2 y3 at the second
            z32 = z12 + g21 * dt / 2;               //fraction of dt
            z33 = z13 + g31 * dt / 2;

            g12 = a * (z32 - z31);
            g22 = r * z31 - z32 - z31 * z33;
            g32 = z31 * z32 - b * z33;

            z41 = z11 + g12 * dt;               //finding y1 y2 y3 at the third
            z42 = z12 + g22 * dt;               //fraction of dt
            z43 = z13 + g32 * dt;

            g13 = a * (z42 - z41);
            g23 = r * z41 - z42 - z41 * z43;
            g33 = z41 * z42 - b * z43;

            z51 = z11 + (g10 + 2 * g11 + 2 * g12 + g13) * dt / 6; //final y values at y(t+dt)
            z52 = z12 + (g20 + 2 * g21 + 2 * g22 + g23) * dt / 6; //then to be repesated in for loop for all steps
            z53 = z13 + (g30 + 2 * g31 + 2 * g32 + g33) * dt / 6;

            af = (z51) * k1 + x0;
            bf = (z52) * k2 + y0;


            //DRAWING LINE JUST CALCULATED

            mut.WaitOne();
            System.Drawing.Graphics graphicsObj = Graphics.FromImage(offScrBuff);

            graphicsObj.DrawLine(Pens.Red, (int)xi, (int)yi, (int)xf, (int)yf);

            graphicsObj.DrawLine(Pens.RoyalBlue, (int)ai, (int)bi, (int)af, (int)bf);

            graphicsObj.Dispose();
            mut.ReleaseMutex();

            pictureBox1.Invalidate();


            //REDEFINING COORDS AND VALUES FOR NEXT LOOP
            //first particle
            xi = (y51) * k1 + x0;
            yi = (y52) * k2 + y0;
            y11 = y51;
            y12 = y52;
            y13 = y53;

            //second particle
            ai = (z51) * k1 + x0;
            bi = (z52) * k2 + y0;
            z11 = z51;
            z12 = z52;
            z13 = z53;
            /*even at 1 the below makes the program far too slow, need an alternative
             intention was for it to allow user to see the particle trajectories better*/
            //System.Threading.Thread.Sleep(1);
        }

    }

    private void button1_Click(object sender, EventArgs e)
    {
        Task.Factory.StartNew(() => { DrawLorenzChaos(10.0, 8.0 / 3.0, 28); });
    }
}
于 2012-11-21T17:51:36.637 に答える