4

さて、カルマン フィルターを使用してブロブ トラッキングの小さな例を作成しようとしています。このタスクを達成するためにopenCVを使用していますが、出力を追跡するオブジェクトを非表示にすると、カルマンフィルターはオブジェクトの場所を推定しようとしないため、想定どおりに機能しないようです。以下にコードを添付します。誰かが私が間違っていることについてヒントを与えてくれることを願っています。

前もって感謝します.... :-)

#include <iostream>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/video/tracking.hpp>

using namespace std;
using namespace cv;

#define drawCross( img, center, color, d )\
line(img, Point(center.x - d, center.y - d), Point(center.x + d, center.y + d), color, 2, CV_AA, 0);\
line(img, Point(center.x + d, center.y - d), Point(center.x - d, center.y + d), color, 2, CV_AA, 0 )\

int main()
{
  Mat frame, thresh_frame;
  vector<Mat> channels;
  VideoCapture capture;
  vector<Vec4i> hierarchy;
  vector<vector<Point> > contours;

  capture.open("capture.avi");

  if(!capture.isOpened())
    cerr << "Problem opening video source" << endl;

  KalmanFilter KF(4, 2, 0);
  Mat_<float> state(4, 1);
  Mat_<float> processNoise(4, 1, CV_32F);
  Mat_<float> measurement(2,1); measurement.setTo(Scalar(0));

  KF.statePre.at<float>(0) = 0;
  KF.statePre.at<float>(1) = 0;
  KF.statePre.at<float>(2) = 0;
  KF.statePre.at<float>(3) = 0;

  KF.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0,   0,1,0,1,  0,0,1,0,  0,0,0,1); // Including velocity
  KF.processNoiseCov = *(cv::Mat_<float>(4,4) << 0.2,0,0.2,0,  0,0.2,0,0.2,  0,0,0.3,0,  0,0,0,0.3);

  setIdentity(KF.measurementMatrix);
  setIdentity(KF.processNoiseCov, Scalar::all(1e-4));
  setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));
  setIdentity(KF.errorCovPost, Scalar::all(.1));

  while((char)waitKey(1) != 'q' && capture.grab())
    {
      capture.retrieve(frame);

      split(frame, channels);
      add(channels[0], channels[1], channels[1]);
      subtract(channels[2], channels[1], channels[2]);
      threshold(channels[2], thresh_frame, 50, 255, CV_THRESH_BINARY);
      medianBlur(thresh_frame, thresh_frame, 5);

      findContours(thresh_frame, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));

      Mat drawing = Mat::zeros(thresh_frame.size(), CV_8UC1);
      for(size_t i = 0; i < contours.size(); i++)
        {
//          cout << contourArea(contours[i]) << endl;
          if(contourArea(contours[i]) > 500)
            drawContours(drawing, contours, i, Scalar::all(255), CV_FILLED, 8, vector<Vec4i>(), 0, Point());
        }
      thresh_frame = drawing;

      findContours(thresh_frame, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));

      drawing = Mat::zeros(thresh_frame.size(), CV_8UC1);
      for(size_t i = 0; i < contours.size(); i++)
        {
//          cout << contourArea(contours[i]) << endl;
          if(contourArea(contours[i]) > 500)
            drawContours(drawing, contours, i, Scalar::all(255), CV_FILLED, 8, vector<Vec4i>(), 0, Point());
        }
      thresh_frame = drawing;

// Get the moments
      vector<Moments> mu(contours.size() );
      for( size_t i = 0; i < contours.size(); i++ )
        { mu[i] = moments( contours[i], false ); }

//  Get the mass centers:
      vector<Point2f> mc( contours.size() );
      for( size_t i = 0; i < contours.size(); i++ )
        { mc[i] = Point2f( mu[i].m10/mu[i].m00 , mu[i].m01/mu[i].m00 ); }

      Mat prediction = KF.predict();
      Point predictPt(prediction.at<float>(0),prediction.at<float>(1));

      for(size_t i = 0; i < mc.size(); i++)
        {
          drawCross(frame, mc[i], Scalar(255, 0, 0), 5);
          measurement(0) = mc[i].x;
          measurement(1) = mc[i].y;
        }

      Point measPt(measurement(0),measurement(1));

      Mat estimated = KF.correct(measurement);
      Point statePt(estimated.at<float>(0),estimated.at<float>(1));

      drawCross(frame, statePt, Scalar(255, 255, 255), 5);

      vector<vector<Point> > contours_poly( contours.size() );
      vector<Rect> boundRect( contours.size() );
      for( size_t i = 0; i < contours.size(); i++ )
       { approxPolyDP( Mat(contours[i]), contours_poly[i], 3, true );
         boundRect[i] = boundingRect( Mat(contours_poly[i]) );
       }

      for( size_t i = 0; i < contours.size(); i++ )
       {
         rectangle( frame, boundRect[i].tl(), boundRect[i].br(), Scalar(0, 255, 0), 2, 8, 0 );
       }


      imshow("Video", frame);
      imshow("Red", channels[2]);
      imshow("Binary", thresh_frame);
    }
  return 0;
}
4

0 に答える 0