1 つの (マイナーな) 高速化は、10000 の個別の行コレクションではなく、単一の行コレクションを追加することです。
すべての線が同じカラーマップを共有している限り、それらを単一の線コレクションにグループ化でき、それぞれに独立したグラデーションを使用できます。
Matplotlib は、この種の処理ではまだ遅いです。高速な描画時間ではなく、高品質の出力用に最適化されています。ただし、速度を少し上げることができます (~3x)。
だから、あなたがおそらく(?)今それをやっていると私が思う方法の例として:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
# Make random number generation consistent between runs
np.random.seed(5)
def main():
numlines, numpoints = 2, 3
lines = np.random.random((numlines, numpoints, 2))
fig, ax = plt.subplots()
for line in lines:
# Add "num" additional segments to the line
segments, color_scalar = interp(line, num=20)
coll = LineCollection(segments)
coll.set_array(color_scalar)
ax.add_collection(coll)
plt.show()
def interp(data, num=20):
"""Add "num" additional points to "data" at evenly spaced intervals and
separate into individual segments."""
x, y = data.T
dist = np.hypot(np.diff(x - x.min()), np.diff(y - y.min())).cumsum()
t = np.r_[0, dist] / dist.max()
ti = np.linspace(0, 1, num, endpoint=True)
xi = np.interp(ti, t, x)
yi = np.interp(ti, t, y)
# Insert the original vertices
indices = np.searchsorted(ti, t)
xi = np.insert(xi, indices, x)
yi = np.insert(yi, indices, y)
return reshuffle(xi, yi), ti
def reshuffle(x, y):
"""Reshape the line represented by "x" and "y" into an array of individual
segments."""
points = np.vstack([x, y]).T.reshape(-1,1,2)
points = np.concatenate([points[:-1], points[1:]], axis=1)
return points
if __name__ == '__main__':
main()
代わりに、これらの行に沿って何かを行うことをお勧めします (唯一の違いはmain
関数にあります)。
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
# Make random number generation consistent between runs
np.random.seed(5)
def main():
numlines, numpoints = 2, 3
points = np.random.random((numlines, numpoints, 2))
# Add "num" additional segments to each line
segments, color_scalar = zip(*[interp(item, num=20) for item in points])
segments = np.vstack(segments)
color_scalar = np.hstack(color_scalar)
fig, ax = plt.subplots()
coll = LineCollection(segments)
coll.set_array(color_scalar)
ax.add_collection(coll)
plt.show()
def interp(data, num=20):
"""Add "num" additional points to "data" at evenly spaced intervals and
separate into individual segments."""
x, y = data.T
dist = np.hypot(np.diff(x - x.min()), np.diff(y - y.min())).cumsum()
t = np.r_[0, dist] / dist.max()
ti = np.linspace(0, 1, num, endpoint=True)
xi = np.interp(ti, t, x)
yi = np.interp(ti, t, y)
# Insert the original vertices
indices = np.searchsorted(ti, t)
xi = np.insert(xi, indices, x)
yi = np.insert(yi, indices, y)
return reshuffle(xi, yi), ti
def reshuffle(x, y):
"""Reshape the line represented by "x" and "y" into an array of individual
segments."""
points = np.vstack([x, y]).T.reshape(-1,1,2)
points = np.concatenate([points[:-1], points[1:]], axis=1)
return points
if __name__ == '__main__':
main()
両方のバージョンで同じプロットが生成されます。

ただし、行数を 10000 まで上げると、パフォーマンスに大きな違いが見られるようになります。
10000 ラインを使用し、それぞれ 3 ポイントと追加の 20 ポイントがカラー グラデーション (各ラインに 23 セグメント) のために補間され、図を png に保存するのにかかる時間を調べます。
Took 10.866694212 sec with a single collection
Took 28.594727993 sec with multiple collections
したがって、単一行コレクションを使用すると、この特定のケースでは 3 倍未満のスピードアップが得られます。それは恒星ではありませんが、何もないよりはましです。
これがタイミング コードと出力図です (出力図は、描画の順序が異なるため、まったく同じではありません。z レベルを制御する必要がある場合は、別の線コレクションに固執する必要があります)。 :

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
import time
# Make random number generation consistent between runs
np.random.seed(5)
def main():
numlines, numpoints = 10000, 3
lines = np.random.random((numlines, numpoints, 2))
# Overly simplistic timing, but timeit is overkill for this exmaple
tic = time.time()
single_collection(lines).savefig('/tmp/test_single.png')
toc = time.time()
print 'Took {} sec with a single collection'.format(toc-tic)
tic = time.time()
multiple_collections(lines).savefig('/tmp/test_multiple.png')
toc = time.time()
print 'Took {} sec with multiple collections'.format(toc-tic)
def single_collection(lines):
# Add "num" additional segments to each line
segments, color_scalar = zip(*[interp(item, num=20) for item in lines])
segments = np.vstack(segments)
color_scalar = np.hstack(color_scalar)
fig, ax = plt.subplots()
coll = LineCollection(segments)
coll.set_array(color_scalar)
ax.add_collection(coll)
return fig
def multiple_collections(lines):
fig, ax = plt.subplots()
for line in lines:
# Add "num" additional segments to the line
segments, color_scalar = interp(line, num=20)
coll = LineCollection(segments)
coll.set_array(color_scalar)
ax.add_collection(coll)
return fig
def interp(data, num=20):
"""Add "num" additional points to "data" at evenly spaced intervals and
separate into individual segments."""
x, y = data.T
dist = np.hypot(np.diff(x - x.min()), np.diff(y - y.min())).cumsum()
t = np.r_[0, dist] / dist.max()
ti = np.linspace(0, 1, num, endpoint=True)
xi = np.interp(ti, t, x)
yi = np.interp(ti, t, y)
# Insert the original vertices
indices = np.searchsorted(ti, t)
xi = np.insert(xi, indices, x)
yi = np.insert(yi, indices, y)
return reshuffle(xi, yi), ti
def reshuffle(x, y):
"""Reshape the line represented by "x" and "y" into an array of individual
segments."""
points = np.vstack([x, y]).T.reshape(-1,1,2)
points = np.concatenate([points[:-1], points[1:]], axis=1)
return points
if __name__ == '__main__':
main()