valarray
SSE と AVX でベクトル化できるように、アライメントされたメモリを確実に使用する方法はありますか? 私の知る限り、STL はアラインメントを保証しておらず、アロケーターを valarray に渡すことはできません。これを達成する別の方法はありますか?
よろしくお願いします!
私は通常std::vector
、テンプレート パラメーターとして配置され、_mm_malloc()
orを呼び出す独自のアロケーターと共に使用します_aligned_malloc()
。これは、AVX (32 バイト アラインメント) でも非常にうまく機能します。適切に記述されたテンプレート化されたユーザー コードは、必要な配置を自動的に選択します。
AlignmentAllocator<>
and ヘルパーのコードの下。gcc および icpc でテスト済み。
/// allocate and de-allocate aligned memory
template<std::size_t alignment>
struct static_allocator {
static void*allocate(std::size_t n)
{
if(n == 0) return 0;
if(n > max_size())
throw std::bad_alloc();
void*ret =
#if defined(__GNUC__) || defined (__INTEL_COMPILER)
_mm_malloc
#else
_aligned_malloc
#endif
(n,alignment);
if(!ret)
throw std::bad_alloc();
return ret;
}
static void deallocate(void*p)
{
#if defined(__GNUC__) || defined (__INTEL_COMPILER)
_mm_free
#else
_aligned_free
#endif
(p);
}
static std::size_t max_size ()
{ return std::numeric_limits<std::size_t>::max(); }
};
/// allocate and de-allocate unaligned memory
template<>
struct static_allocator<1> {
static std::size_t max_size () noexcept
{ return std::numeric_limits<std::size_t>::max(); }
static void*allocate(std::size_t n)
{
if(n == 0) return 0;
void*ret = new char[n];
return ret;
}
static void deallocate(void*p)
{ delete[] static_cast<char*>(p); }
};
template<> struct static_allocator<0>;
/// allocator with explicit alignment
template<typename _Tp, std::size_t alignment = 16>
class AlignmentAllocator
{
typedef static_allocator<alignment> static_alloc;
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template <typename _Tp1>
struct rebind
{ typedef AlignmentAllocator<_Tp1, alignment> other; };
AlignmentAllocator() {}
AlignmentAllocator(const AlignmentAllocator&) {}
template <typename _Tp1>
AlignmentAllocator(const AlignmentAllocator<_Tp1, alignment> &) {}
~AlignmentAllocator() {}
pointer address (reference x) const
{
#if __cplusplus >= 201103L
return std::addressof(x);
#else
return reinterpret_cast<_Tp*>(&reinterpret_cast<char&>(x));
#endif
}
const_pointer address (const_reference x) const
{
#if __cplusplus >= 201103L
return std::addressof(x);
#else
return reinterpret_cast<const _Tp*>(&reinterpret_cast<const char&>(x));
#endif
}
pointer allocate (size_type n, const void* = 0)
{ return static_cast<pointer>(static_alloc::allocate(n*sizeof(value_type))); }
void deallocate (pointer p, size_type)
{ static_alloc::deallocate(p); }
size_type max_size () const
{ return static_alloc::max_size() / sizeof (value_type); }
#if __cplusplus >= 201103L
template<typename _Up, typename... _Args>
void construct(_Up* p, _Args&&... args)
{ ::new(static_cast<void*>(p)) _Up(std::forward<_Args>(args)...); }
template<typename _Up>
void destroy(_Up* p)
{ p->~_Up(); }
#else
void construct (pointer p, const_reference val)
{ ::new(static_cast<void*>(p)) value_type(val); }
void destroy (pointer p)
{ p->~value_type (); }
#endif
bool operator!=(const AlignmentAllocator&) const
{ return false; }
// Returns true if and only if storage allocated from *this
// can be deallocated from other, and vice versa.
// Always returns true for stateless allocators.
bool operator==(const AlignmentAllocator&) const
{ return true; }
};// class AlignmentAllocator<>
/// AlignmentAllocator<void> specialization.
template<std::size_t alignment>
class AlignmentAllocator<void, alignment>
{
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef void* pointer;
typedef const void* const_pointer;
typedef void value_type;
template<typename _Tp1>
struct rebind
{ typedef AlignmentAllocator<_Tp1, alignment> other; };
};