3

時系列が与えられた場合s、日時インデックスを使用して、日付文字列で時系列にインデックスを付けることができると予想しました。これがどのように機能するかを誤解していますか?

import pandas as pd
url = 'http://ichart.finance.yahoo.com/table.csvs=SPY&d=12&e=4&f=2012&g=d&a=01&b=01&c=2001&ignore=.csv'  
df = pd.read_csv(url, index_col='Date', parse_dates=True)  
s = df['Close']
s['2012-12-04']

結果:

TimeSeriesError                           Traceback (most recent call last)
<ipython-input-244-e2ccd4ecce94> in <module>()
      2 df = pd.read_csv(url, index_col='Date', parse_dates=True)  
      3 s = df['Close']  
----> 4 s['2012-12-04']

    G:\Python27-32\lib\site-packages\pandas\core\series.pyc in __getitem__(self, key)
    468     def __getitem__(self, key):
    469         try:
--> 470             return self.index.get_value(self, key)
    471         except InvalidIndexError:
    472             pass

    G:\Python27-32\lib\site-packages\pandas\tseries\index.pyc in get_value(self, series, key)  

   1030 
   1031             try:
-> 1032                 loc = self._get_string_slice(key)
   1033                 return series[loc]
   1034             except (TypeError, ValueError, KeyError):

G:\Python27-32\lib\site-packages\pandas\tseries\index.pyc in _get_string_slice(self, key)
   1077         asdt, parsed, reso = parse_time_string(key, freq)
   1078         key = asdt
-> 1079         loc = self._partial_date_slice(reso, parsed)
   1080         return loc
   1081 

G:\Python27-32\lib\site-packages\pandas\tseries\index.pyc in _partial_date_slice(self, reso, parsed)
    992     def _partial_date_slice(self, reso, parsed):
    993         if not self.is_monotonic:
--> 994             raise TimeSeriesError('Partial indexing only valid for ordered '
    995                                   'time series.')
    996 

TimeSeriesError: Partial indexing only valid for ordered time series. 

より具体的に(そしておそらくペダンティックに..)、2つの時系列の違いは次のとおりです。

import pandas as pd
url = 'http://ichart.finance.yahoo.com/table.csv?        s=SPY&d=12&e=4&f=2012&g=d&a=01&b=01&c=2001&ignore=.csv'
s = pd.read_csv(url, index_col='Date', parse_dates=True)['Close']
rng = date_range(start='2011-01-01', end='2011-12-31')
ts = Series(randn(len(rng)), index=rng)
print ts.__class__
print ts.index[0].__class__
print s1.__class__
print s1.index[0].__class__
print ts[ts.index[0]]
print s[s.index[0]]
print ts['2011-01-01']
try:
    print s['2012-12-05']
except:
    print "doesn't work" 

結果:

<class 'pandas.core.series.TimeSeries'>
<class 'pandas.lib.Timestamp'>
<class 'pandas.core.series.TimeSeries'>
<class 'pandas.lib.Timestamp'>
-0.608673793503
141.5
-0.608673793503
doesn't work
4

3 に答える 3

2

Timestampオブジェクトでインデックスを作成してみてください:

>>> import pandas as pd
>>> from pandas.lib import Timestamp
>>> url = 'http://ichart.finance.yahoo.com/table.csv?s=SPY&d=12&e=4&f=2012&g=d&a=01&b=01&c=2001&ignore=.csv'
>>> df = pd.read_csv(url, index_col='Date', parse_dates=True)
>>> s = df['Close']
>>> s[Timestamp('2012-12-04')]
141.25
于 2012-12-06T06:57:31.620 に答える
1

時系列が順序付けられておらず、部分的なタイムスタンプ (日時ではなく日付など) を指定すると、どの日時を選択する必要があるかが明確になりません。

日付ごとに 1 つの datetime オブジェクトしかないと仮定することはできませんが、この例にはいくつかのオプションがありますが、ユーザーの動機を推測するよりも、ここでエラーをスローする方が安全なようです。( に似たシリーズ/リストを返す.ix['2011-01']こともできますが、他の場合に数値を返すと混乱する可能性があります。「最も近い一致」を返そうとすることもできますが、これも意味がありません。)

順序付きの場合は簡単です。選択した日付の最初の日時を選択します。

この単純な例で、この動作を確認できます。

import pandas as pd
from numpy.random import randn
from random import shuffle
rng = pd.date_range(start='2011-01-01', end='2011-12-31')
rng2 = list(rng)
shuffle(rng2) # not in order
rng3 = list(rng)
del rng3[20] # in order, but no freq

ts = pd.Series(randn(len(rng)), index=rng)
ts2 = pd.Series(randn(len(rng)), index=rng2)
ts3 = pd.Series(randn(len(rng)-1), index=rng3)

ts.index
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-01 00:00:00, ..., 2011-12-31 00:00:00]
Length: 365, Freq: D, Timezone: None

ts['2011-01-01']
# -1.1454418070543406

ts2.index
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-04-16 00:00:00, ..., 2011-03-10 00:00:00]
Length: 365, Freq: None, Timezone: None

ts2['2011-01-01']
#...error which you describe
TimeSeriesError: Partial indexing only valid for ordered time series

ts3.index
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-01 00:00:00, ..., 2011-12-31 00:00:00]
Length: 364, Freq: None, Timezone: None

ts3['2011-01-01']
1.7631554507355987


rng4 = pd.date_range(start='2011-01-01', end='2011-01-31', freq='H')
ts4 = pd.Series(randn(len(rng4)), index=rng4)

ts4['2011-01-01'] == ts4[0]
# True # it picks the first element with that date

これはバグではないと思いますが、github に問題として投稿しました

于 2012-12-06T12:11:05.367 に答える
0

パンダのチュートリアルは有益でしたが、最初に提起された質問には直接的な回答が必要だと思います。Yahoo チャート情報をスライスできる DataFrame に変換するときに同じ問題に遭遇しました。必要なのは次のことだけであることがわかりました。

import pandas as pd
import datetime as dt

def dt_parser(date): 
return dt.datetime.strptime(date, '%Y-%m-%d') + dt.timedelta(hours=16)

url = 'http://ichart.finance.yahoo.com/table.csvs=SPY&d=12&e=4&f=2012&g=d&a=01&b=01&c=2001&ignore=.csv'  
df = pd.read_csv(url, index_col=0, parse_dates=True, date_parser=dt_parser)
df.sort_index(inplace=True)
s = df['Close']
s['2012-12-04']     # now should work

「トリック」は、独自のdate_parserを含めることでした。read_csv 内でこれを行うためのより良い方法があると推測していますが、これにより、少なくともインデックスが作成され、スライスできる DataFrame が生成されました。

于 2013-01-06T04:13:00.333 に答える