0

svmlight/liblinear/libsvm フォーマットに従う大きなテキスト ファイルがいくつかあります。

35 1:23 2:35 3:1.2 4:353.12
12 1:21 2:31 3:1.1 4:323.12
5 1:22 2:37 3:1.5 4:343.12

実際のデータ ファイルの一部の行は次のとおりです。

2007  1:45.442001 2:-30.749760 3:31.785870 4:4.635690 5:-15.148940 6:0.233700 7:-11.979680 8:-9.597080 9:6.481110 10:-8.890730 11:4.024050 12:-2.288730 13:17.902040 14:1377.122192 15:1762.042603 16:947.344299 17:562.281372 18:524.268127 19:361.254089 20:514.535095 21:247.701263 22:399.788788 23:205.365204 24:211.868698 25:44.889709 26:-299.639221 27:-227.641693 28:7.342100 29:-85.800568 30:16.812111 31:-41.185810 32:-12.008580 33:-41.921169 34:-26.523121 35:-12.197650 36:89.611038 37:-266.078339 38:-230.312225 39:-168.296097 40:38.403709 41:31.840160 42:28.980709 43:-98.734467 44:26.465651 45:-30.232719 46:-1.346370 47:253.369446 48:61.734241 49:16.157650 50:185.248672 51:75.572441 52:55.173672 53:-41.088692 54:15.864380 55:16.036921 56:-142.579681 57:59.747959 58:-151.467606 59:-12.706120 60:-104.992416 61:23.105141 62:47.001789 63:-13.598940 64:-79.190453 65:-27.637449 66:38.946049 67:-55.405849 68:54.735271 69:15.105210 70:-3.795960 71:390.477203 72:17.640181 73:-68.648270 74:-62.436111 75:-31.960951 76:33.907799 77:-181.376083 78:139.840775 79:-129.488403 80:76.238258 81:-8.840460 82:-0.154390 83:137.442093 84:77.547394 85:-4.228750 86:-61.926571 87:-33.527222 88:-3.862530 89:36.424000 90:7.173090
2003  1:52.678139 2:-2.889140 3:43.952679 4:-1.392090 5:-14.933790 6:-15.868770 7:1.193790 8:0.314010 9:-4.442350 10:-5.789340 11:2.296380 12:3.228460 13:5.668400 14:702.253845 15:685.431763 16:390.788666 17:895.268372 18:324.306152 19:256.451416 20:208.506546 21:190.251114 22:152.547104 23:119.232758 24:120.306580 25:7.739700 26:-8.927490 27:41.785198 28:-77.864777 29:-3.884480 30:6.110340 31:-27.502100 32:-0.865540 33:-8.058480 34:-20.055000 35:-2.468020 36:-10.228670 37:-94.059570 38:-76.709084 39:-62.492088 40:-165.220093 41:31.989639 42:11.304370 43:-29.555790 44:15.538950 45:-13.984620 46:-3.623290 47:398.099701 48:135.859528 49:-44.194340 50:72.132782 51:42.844990 52:28.899509 53:14.900610 54:11.398700 55:1.567970 56:-35.880360 57:57.098370 58:-53.742119 59:-79.554382 60:1.636050 61:-3.932900 62:-3.789370 63:-13.990090 64:-29.146971 65:-2.626020 66:55.268539 67:-7.301310 68:54.086380 69:-3.893580 70:0.908760 71:45.458092 72:36.820759 73:-44.692669 74:-20.529881 75:-6.139750 76:2.592730 77:-136.928253 78:22.407591 79:-36.550179 80:-35.025360 81:-5.743560 82:-42.579102 83:-2.911030 84:48.728050 85:-3.081830 86:-9.388880 87:-7.271790 88:-4.009660 89:-68.962112 90:-5.215250
2005  1:45.742352 2:12.022910 3:11.030090 4:-11.607630 5:11.800540 6:-11.123890 7:-5.390580 8:-1.119810 9:-7.740860 10:-3.334210 11:-3.226590 12:1.592990 13:40.885361 14:1972.836426 15:1145.013672 16:1099.560791 17:756.863953 18:590.113098 19:643.208435 20:404.141327 21:297.472534 22:223.873596 23:201.423416 24:226.905090 25:-1.111890 26:415.191345 27:71.191254 28:-55.937180 29:-31.572590 30:-14.187500 31:51.356079 32:15.550360 33:2.802390 34:-32.016411 35:22.382231 36:22.671370 37:49.065201 38:200.912338 39:-311.135925 40:-41.306648 41:-28.763250 42:89.578720 43:-44.595200 44:36.640621 45:-31.243629 46:-13.913190 47:103.467232 48:-20.585791 49:-18.699551 50:88.995888 51:-27.768690 52:54.397881 53:45.422440 54:33.072189 55:10.182240 56:-35.116600 57:249.768066 58:-76.346748 59:41.672920 60:-38.447338 61:-25.854719 62:-22.664749 63:-13.078690 64:18.624029 65:74.230911 66:35.444550 67:12.329590 68:22.056810 69:44.172779 70:46.889111 71:106.983597 72:74.135773 73:22.619181 74:-6.700720 75:-24.821899 76:35.950630 77:14.704640 78:139.090805 79:-80.349121 80:-6.568260 81:-4.706060 82:-24.225990 83:-35.226860 84:27.777290 85:15.389340 86:58.200359 87:-61.126980 88:-10.925220 89:26.753481 90:-5.787430
2003  1:52.558830 2:2.872220 3:27.388479 4:-5.762350 5:-15.357660 6:-15.015920 7:-5.868930 8:-0.314470 9:-5.069220 10:-4.627340 11:1.094960 12:0.146510 13:4.728110 14:525.899292 15:426.023407 16:462.865997 17:545.496765 18:320.350647 19:207.019897 20:241.681976 21:215.257568 22:121.743217 23:113.572952 24:151.218094 25:11.411310 26:-8.163200 27:-21.420420 28:-34.561981 29:9.114970 30:13.452100 31:-6.900850 32:-7.353940 33:-5.067550 34:-5.165550 35:0.510740 36:7.155810 37:-159.725861 38:-25.356190 39:-102.939949 40:36.878929 41:3.154020 42:18.147430 43:-28.873240 44:21.521170 45:1.494080 46:0.855090 47:112.993828 48:69.087212 49:-56.420319 50:116.512131 51:13.048910 52:22.800711 53:9.616600 54:16.319309 55:17.906010 56:0.850250 57:54.610882 58:-23.400669 59:-66.643929 60:-12.870030 61:-6.847970 62:-2.526670 63:-7.898560 64:-6.603840 65:-3.535520 66:90.427971 67:9.425460 68:36.567829 69:25.027519 70:-1.734350 71:37.976860 72:12.334080 73:-4.718090 74:-14.820230 75:-27.884081 76:9.275720 77:-134.637466 78:32.129719 79:-36.809818 80:27.452789 81:-8.352150 82:-16.867910 83:-10.582770 84:40.101730 85:-0.540050 86:-11.547460 87:-45.358601 88:-4.556940 89:-43.173679 90:-3.337250
2005  1:51.348091 2:9.027020 3:25.337570 4:-6.625370 5:0.033670 6:-12.695650 7:-3.134000 8:2.986490 9:-6.717500 10:-1.858040 11:-1.114940 12:-0.607370 13:9.876010 14:1146.054565 15:864.638367 16:989.264832 17:552.562683 18:547.281555 19:348.295197 20:328.138306 21:270.355560 22:192.469040 23:192.741516 24:149.908417 25:-28.374889 26:-12.990660 27:-227.448273 28:-30.600500 29:64.353157 30:70.337830 31:-42.221901 32:11.576720 33:0.563700 34:-2.935510 35:-0.233660 36:30.354120 37:19.311819 38:41.338871 39:-309.293457 40:58.497639 41:17.552410 42:37.494869 43:-58.175140 44:28.816250 45:-0.601190 46:-17.050550 47:144.773346 48:110.054649 49:-196.500870 50:72.839363 51:-65.838982 52:57.181580 53:54.270790 54:16.510670 55:5.466400 56:52.857239 57:40.528839 58:97.970413 59:28.994801 60:71.283318 61:-33.390919 62:10.739650 63:-7.166210 64:-8.740700 65:-92.274887 66:78.802193 67:60.469372 68:39.829880 69:37.804260 70:-1.799860 71:114.848869 72:-51.463718 73:-125.398689 74:19.257271 75:-26.166790 76:-5.827070 77:-121.600388 78:69.711678 79:24.589479 80:80.465950 81:-6.873660 82:-20.033710 83:-66.389397 84:50.565689 85:0.277470 86:67.056572 87:-55.588459 88:-7.508590 89:28.235109 90:-0.720450
2007  1:45.846401 2:2.833760 3:-6.005060 4:-15.161500 5:-10.723850 6:-15.152330 7:5.007240 8:1.690390 9:-0.955270 10:-0.648950 11:-5.076770 12:-2.181690 13:32.260960 14:1255.578735 15:1491.808838 16:929.633484 17:884.464905 18:513.442078 19:533.146179 20:315.062347 21:355.699799 22:187.780396 23:273.448730 24:239.651230 25:42.578140 26:139.817398 27:77.404160 28:-125.109329 29:3.481800 30:8.431550 31:25.527790 32:-11.566490 33:31.547911 34:-33.194939 35:35.622768 36:98.843971 37:-74.664299 38:-55.493752 39:-142.034805 40:136.285583 41:57.116482 42:96.431488 43:-6.046260 44:17.230221 45:-9.377930 46:26.988079 47:-61.483089 48:149.761673 49:-41.559071 50:122.963379 51:-61.148178 52:63.133350 53:-4.466220 54:39.530510 55:-30.881510 56:73.216476 57:64.885696 58:-52.324692 59:157.851456 60:-9.440020 61:-59.519360 62:13.423860 63:18.665951 64:-208.924088 65:96.040138 66:-75.221062 67:112.305283 68:-17.383190 69:32.235378 70:3.296620 71:50.905499 72:-128.179276 73:-15.145500 74:-113.525757 75:-46.479698 76:18.937969 77:-139.734528 78:16.025990 79:-85.868294 80:39.124649 81:-27.972549 82:-76.794800 83:55.541039 84:88.864410 85:-8.432410 86:62.005070 87:123.561462 88:7.871000 89:-38.616798 90:26.411659
2003  1:48.135792 2:1.086430 3:9.589960 4:-12.595940 5:-0.094050 6:-12.147480 7:-13.709280 8:-3.098700 9:-1.393680 10:-4.756290 11:-1.302600 12:1.310910 13:26.323999 14:1461.063721 15:1170.573975 16:1014.678223 17:757.746460 18:515.308411 19:315.104584 20:321.322754 21:334.500549 22:224.677887 23:213.518784 24:215.590195 25:-36.780762 26:230.421402 27:31.557949 28:-134.648193 29:48.904621 30:34.625450 31:4.527690 32:12.819410 33:0.127740 34:-7.029300 35:16.655870 36:-19.999611 37:-152.366150 38:-105.105309 39:-174.247406 40:60.828758 41:49.691872 42:18.926250 43:-57.088161 44:69.231201 45:0.094510 46:24.512751 47:389.871002 48:22.275311 49:-43.229050 50:113.951782 51:-25.452620 52:38.201389 53:43.678810 54:67.439743 55:-59.954189 56:49.155460 57:60.899910 58:-95.543419 59:-44.525139 60:-77.580452 61:-15.260040 62:24.210541 63:-9.920600 64:-128.993469 65:4.179530 66:95.650917 67:-40.966881 68:7.517620 69:26.851370 70:6.279250 71:100.435966 72:74.072609 73:3.479960 74:-40.648312 75:-44.314892 76:10.898230 77:-57.362991 78:99.334396 79:-54.742260 80:104.983833 81:-2.894430 82:-54.763592 83:40.297291 84:31.450239 85:1.103620 86:28.259859 87:23.311010 88:5.403460 89:68.146980 90:-15.644380
2003  1:50.774220 2:10.306970 3:38.833832 4:2.135230 5:-12.295030 6:-16.126940 7:3.010910 8:4.843600 9:-2.116620 10:-1.904550 11:2.062730 12:3.397320 13:14.777590 14:1049.617676 15:1336.198486 16:681.697937 17:879.616577 18:462.965881 19:290.403687 20:282.654999 21:315.051910 22:192.788345 23:177.245438 24:216.466476 25:-20.513330 26:-87.685112 27:-19.301571 28:-46.450470 29:-58.279259 30:13.538130 31:5.162740 32:-0.460890 33:39.515469 34:7.114010 35:15.739370 36:22.136230 37:-81.368942 38:-147.379425 39:-98.616241 40:-29.209419 41:34.321522 42:2.060160 43:-30.081430 44:36.432110 45:-13.177250 46:2.261150 47:340.016541 48:10.768990 49:-57.379421 50:110.271263 51:-19.973940 52:3.625370 53:-10.102060 54:-1.543880 55:-7.883780 56:-3.416110 57:66.224503 58:-8.526570 59:-83.281860 60:-9.265550 61:17.536169 62:14.193860 63:-10.285960 64:-60.309750 65:-131.561417 66:85.569321 67:28.591600 68:37.395119 69:42.838001 70:6.753630 71:31.879320 72:-35.305740 73:-49.290539 74:-56.658569 75:-29.851339 76:5.755470 77:-127.410233 78:6.754480 79:-18.591490 80:48.416950 81:-5.079660 82:-44.774738 83:44.031250 84:10.971820 85:-4.908250 86:-23.094490 87:-21.832060 88:-0.139780 89:-39.147041 90:0.954250
2003  1:49.158970 2:-2.382560 3:51.106758 4:2.096510 5:-19.883600 6:-10.847170 7:1.936660 8:-0.585220 9:-9.527060 10:-5.628470 11:1.117850 12:8.080500 13:52.736198 14:1610.526367 15:1048.697876 16:699.699097 17:1093.320190 18:442.795197 19:413.717560 20:282.639801 21:327.524323 22:212.697281 23:143.314911 24:283.513153 25:-104.071472 26:84.974327 27:49.865181 28:-4.966470 29:-2.476170 30:-9.160600 31:-31.066231 32:-33.176239 33:-3.536770 34:-26.308910 35:27.660151 36:-25.920719 37:-46.777882 38:6.794870 39:-153.272095 40:-215.387848 41:20.085751 42:28.508430 43:-48.295429 44:20.006901 45:-5.075860 46:-22.038639 47:689.643738 48:51.127209 49:-57.364071 50:36.180710 51:-11.456780 52:-11.060990 53:1.324540 54:31.615129 55:-122.590012 56:-27.722010 57:164.565201 58:-8.001100 59:-46.325619 60:7.174110 61:39.002029 62:2.867760 63:-14.931470 64:-222.400345 65:-29.179220 66:91.891869 67:54.306229 68:1.223730 69:83.647133 70:37.999901 71:25.496920 72:48.499828 73:-78.835808 74:-125.095070 75:-30.123671 76:3.157580 77:-166.867477 78:54.335869 79:-52.169189 80:-156.988968 81:0.460720 82:33.267231 83:14.544800 84:26.725420 85:-10.330890 86:-56.613251 87:24.820271 88:18.069550 89:-148.310776 90:13.764190
2005  1:50.630531 2:-10.591620 3:33.569851 4:-3.657070 5:-17.252439 6:-15.497890 7:-1.123680 8:-1.232340 9:-0.589600 10:-5.671160 11:1.830230 12:3.629500 13:8.015560 14:998.391907 15:664.230408 16:489.109589 17:682.265198 18:359.168152 19:233.805527 20:221.424911 21:187.124252 22:135.840759 23:131.866730 24:134.819794 25:-22.119030 26:-4.471730 27:-25.231850 28:-47.849972 29:-27.661140 30:8.277170 31:3.009250 32:-5.689490 33:-11.178010 34:-20.120310 35:13.760620 36:-6.357670 37:-105.914413 38:-176.465897 39:-80.240990 40:-28.631901 41:28.530621 42:11.108940 43:-31.423651 44:36.545422 45:1.247940 46:-4.130270 47:214.719543 48:90.757584 49:-37.422741 50:95.684219 51:42.480240 52:9.748400 53:9.479200 54:39.394749 55:2.614500 56:-11.076560 57:56.877048 58:-77.622551 59:-96.041847 60:-36.586418 61:-12.461760 62:-11.692830 63:-11.398230 64:34.850460 65:-25.190050 66:70.402802 67:-11.947600 68:43.388599 69:19.466080 70:-0.415960 71:70.317902 72:34.508572 73:-12.467560 74:6.159420 75:-20.868429 76:8.175780 77:-126.849983 78:40.370041 79:-3.643520 80:-64.381844 81:-3.317920 82:19.025909 83:-16.542931 84:43.292210 85:-1.584870 86:-21.691681 87:15.877830 88:-3.735770 89:-70.888710 90:-1.293630

ファイルをdata.frameに読み込みたい。

以下を試してみましたが、超遅いです。これをいくらかスピードアップする方法があるかどうか疑問に思っていますか?

read.svmlight <- function( filename, K ) {
   f <- file( filename, "r")
   lines <- readLines( f )
   close(f)
   print("read lines, parsing...")

   N <- length(lines)
   results <- as.data.frame(matrix(nrow=N,ncol=K))
   for( n in 1:N ) {
      if( n %% 10 == 0 ) {
          cat("n",n,"\n")
      }
      thisline <- lines[n]
      tokens <- strsplit(thisline," ")[[1]]
      thisy <- as.numeric(tokens[1])
      results[n,1] <- thisy
      numtokens <- length(tokens)
      for( j in 2:numtokens ) {
         thistoken <- tokens[j]
         if( thistoken != '' ) {
             splittoken <- strsplit(thistoken,':')[[1]]
             id <- as.integer( splittoken[1])
             value <- as.numeric(splittoken[2])
             results[n,id+1] <- value
         }
      }
   }
   return(results)
}

このスニペットは、1 秒間に約 1 行を処理します。ファイルの長さは約 25,000 行です。

編集: 10 行を解析するための時間は、行の総数に応じて増加するように見えるので、上記のスクリプトの挿入時に再割り当てが発生していると思いますか?

4

4 に答える 4

2

ああ、まあ、これを提供するパッケージはすでにあるようです。ただし、私のソリューションは、OPの内部を提供する可能性があります。

read.svmlight2 <- function( filename ) {
  f <- file( filename, "r")
  lines <- readLines( f )
  close(f)

  temp <- strsplit(lines,'[: ]')
  temp <- do.call('rbind',temp)
  temp2 <- temp[,(1:(ncol(temp)/2))*2]
  temp2[,1] <- temp[,1]
  temp2 <- apply(temp2,2,FUN=as.numeric)
  res <- as.data.frame(temp2)

  res
}
于 2012-12-07T10:03:08.113 に答える
1

おそらく次のようなものを試すことができます:

read.table(text=gsub(" [0-9]+:", " ", readLines("test.txt")))

「test.txt」はデータファイルです... 少なくともサンプルデータでは機能しますが、どれだけ効率的かは確認していません。

于 2012-12-07T09:44:25.610 に答える